• 제목/요약/키워드: Unsteady Flow-Field

검색결과 410건 처리시간 0.021초

전차포 소음 저감을 위한 배플형 소음기의 수치해석 (A Numerical Analysis of the Baffled Silencer for the Noise Diminution of Tank Gun)

  • 고성호;이동수;강국정
    • 대한기계학회논문집B
    • /
    • 제31권3호
    • /
    • pp.217-224
    • /
    • 2007
  • A numerical analysis for a silencer with three baffles of 120mm tank gun has been performed. The Reynolds-Averaged Wavier-Stokes equations with Baldwin-Lomax turbulence model were employed to compute unsteady, compressible flow inside the tank gun and the silencer. An axisymmetric computational domain was constructed by using 12 multi block chimera grids. The resolution of flow field is observed by depicting calculated pressure and muzzle brake force. The peak blast pressure and noise through the silencer reduced approximately 99% and 41dB in comparison to the tank gun without the silencer at near filed.

The Effect of Suction and Injection on Unsteady Flow of a Dusty Conducting Fluid in Rectangular Channel

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1148-1157
    • /
    • 2005
  • In the present study, the unsteady Hartmann flow of a dusty viscous incompressible electrically conducting fluid under the influence of an exponentially decreasing pressure gradient is studied without neglecting the ion slip. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The fluid is acted upon by an external uniform magnetic field which is applied perpendicular to the plates. An analytical solution for the governing equations of motion is obtained to yield the velocity distributions for both the fluid and dust particles.

Study of the unsteady pressure oscillations induced by rectangular cavities in a supersonic flow field

  • Krishnan L.;Ramakrishna M.;Rajan S.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.294-298
    • /
    • 2003
  • The complex, unsteady, self-sustained pressure oscillations induced by supersonic flow past a rectangular cavity is investigated using numerical simulations. The present numerical study is performed using a parallel, multiblock solver for the two-dimensional, compressible Navier­Stokes equations. Open cavities with length-to-depth (L / D) ratio in the range 0.5 - 3.3 are considered. This paper sheds light on the cavity physics, cavity oscillatory mechanism, and the organisation of vortical structures inside the cavity. The vortex shedding phenomenon, the shear layer impingement event at the aft wall and the movement of the acoustic/compression wave within the cavity are well predicted. The vortical structures· and the source of the acoustic disturbances are found to be located near the aft wall of the cavity. With the increase in the cavity length, strong recompression of the flow near the aft wall leading to a sudden jump in the cavity form drag is observed. The estimated cavity tones are in good agreement with the available semi­empirical relation. Multiple peaks are noticed in deep and long cavities. For the present free­stream Mach number 1.71, it is observed that around L/D=2.0, the cavity oscillatory mechanism changes from the transverse to longitudinal oscillatory mode. The effects of this transition on various fluid dynamics and acoustic properties are also discussed.

  • PDF

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

NUMERICAL METHODS FOR CAVITATING FLOW

  • SHIN Byeong Rog
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper, some numerical methods recently developed for gas-liquid two-phase flows are reviewed. And then, a preconditioning method to solve cavitating flow by the author is introduced. This method employs a finite-difference Runge-Kutta method combined with MUSCL TVD scheme, and a homogeneous equilibrium cavitation model. So that it permits to treat simply the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Finally, numerical results such as detailed observations of the unsteady cavity flows, a sheet cavitation break-off phenomena and some data related to performance characteristics of hydrofoils are shown.

  • PDF

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • 제4권4호
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF

평행평판 내의 지주에 의한 와동 유동에 관한 수치해석 (Numerical Computation of Vertex Behind a Bluff Body in the Flow between Parallel Plates)

  • 김동성;유영환
    • 대한기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.1163-1170
    • /
    • 1992
  • 본 연구에서는 자동차 전자제어식 공기유량계를 Fig.2와 같이 평행평판 안에 사각 지주가 있다고 단순화하고 공기는 이차원 비 압축성 점성유동으로 가정했다. 지배방정식은 유체 운동량방정식(navier-Stokes equation)을 와도 전달 방정식(vorti- city transport equation)과 유량 함수 방정식(stream function equation)으로 변환하 여 사용하였다. Peacemanrachford ADI 방법으로 수치해석 하였으며, 유량 함수 방정 식의 수렴성을 좋게 하기 위하여 Wachspress parameter를 사용하였다. 벽면의 경계 조건은 Briely의 4th-order Lagrange interpolation 방법을 따랐다. Reynolds 수 200과 500에서의 비정상유동(unsteady flow)을 계산하였으며, 유동이 정상상태(steady state)에 도달하였을 때에 유동을 교란시켜 와동 흘림(vortex shedding)을 구하였다.

소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구 (Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV)

  • 류민형;조이상;조진수
    • 한국항공우주학회지
    • /
    • 제40권5호
    • /
    • pp.413-422
    • /
    • 2012
  • 덕티드팬을 추진 장치로 사용하는 소형 무인항공기는 도심 및 협소한 공간에서 정찰 및 감시에 사용 가능하며, 프로펠러에 비해 높은 추진 효율과 추력 특성을 나타낸다. 덕티드팬 무인항공기의 운용 거리와 비행 시간을 증가시키기 위해서는 정지 비행 및 전진 비행시의 추력 특성연구가 중요하며 비행 안정성 확보를 위해서는 비정상 3차원 유동 특성 연구가 필수적이다. 본 연구에서는 동익과 정익으로 구성된 덕티드팬의 설계 결과 검증과 안정적인 비행 특성을 확인하기 위해 덕티드팬의 추력 특성과 비정상 3차원 유동장을 계측하였다. 덕티드팬의 정지 및 전진 비행시의 추력 특성은 소형 아음속 풍동의 6분력 밸런스 시스템을 이용하여 측정되었고, 비정상 3차원 유동장은 $45^{\circ}$ 경사열선의 프로브 고정법에 의해 분석되었다. 덕티드팬의 덕트와 정익이 추력특성에 다소 큰 영향을 미치며, 정익에 의해 덕티드팬의 안정적인 비행이 가능함을 확인하였다.

PIV를 이용한 3차원 파형관 내부 유동장의 실험적 연구 (An Experimental Investigation on Flow Field in a Pipe with Sinusoidally Wavy Surface by PIV)

  • 김성균
    • 설비공학논문집
    • /
    • 제16권4호
    • /
    • pp.368-373
    • /
    • 2004
  • A flow field in a passage with periodically converging-diverging cross-section is investigated experimentally by PIV measurement. A tube with a sinusoidally wavy cross section is one of several devices employed for enhancing the heat and mass transfer efficiency due to turbulence promotion and unsteady vortical motion. While the numerical flow visualization results have been limited to the fully developed cases, existing experimental results of this flow were simple qualitative ones by smoke or dye streak test. Therefore, the main purpose of this study is to produce quantitative flow data for fully developed and transient flow regime by the Correlation Based Correction PIV (CBC PIV) and to conjecture the analogy between flow characteristics and heat transfer enhancement with low pumping power. Another purpose of this paper is to examine the onset position of the transition and the global mixing, which results in transfer enhancement. At Re=2000, evidences of the global mixing are captured at 2.5 wavy module through the variation of RMS values and instantaneous velocity plot.