• Title/Summary/Keyword: Unsteady Flow Analysis

Search Result 780, Processing Time 0.03 seconds

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

A Numerical Analysis for Prediction of Flow Rate of the Motor Cooling Fan (전동기 냉각팬의 유량예측을 위한 수치해석)

  • Lee, Sang-Hwan;Kang, Tae-In;Ahn, Chel-O;Seo, In-Soo;Lee, Chang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.670-677
    • /
    • 2005
  • In this study, we analyzed the three dimensional unsteady flow field around the motor cooling fan using the unsteady lifting surface theory. We obtained the flow rate for various geometries of fan from the calculated results of velocity field. For the data of design parameter and rotating speed(rpm) of the fan, we can predict the flow rate of the motor cooling fan with thin thickness through numerical analysis without the experimental data of the free stream velocity which is a boundary condition of flow field. the numerical results showed the flow rate within 10% of error in comparison with experimental results. The radial fans, which are often used as internal motor fan were also investigated with the same procedure.

  • PDF

Unsteady Flow Analysis Around a HAWT System Using Sliding Mesh Technique (미끄럼 격자를 이용한 HAWT 시스템 주위의 비정상 유동장 해석)

  • Lee, Chi-Hoon;Kim, Sang-Gon;Joh, Chang-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.201-209
    • /
    • 2011
  • An unsteady RANS analysis study of the 3-D flow around the NREL Phase VI horizontal axis wind turbine(HAWT) was performed using sliding mesh approach. Two different analysis models such as rotor-only and rotor with tower/nacelle were constructed to investigate the blade/tower interaction. Analysis results for the rotor with tower/nacelle were compared with the corresponding NREL's experimental data which produced fairly good validation of the present CFD model. Comparison of flows around those two models also clearly showed the blade/tower interaction even it was small for upwind configuration. Other visualization results and integrated aerodynamic loads including torque of the blade demonstrated the effective unsteady flow simulation capability of the present CFD model.

A Numerical Study of Initial Unsteady Flow and Mixed Convection in an Enclosed Cavity Using the PISO Algorithm (PISO 알고리즘을 이용한 밀폐공간내에서의 유동 및 혼합대류에 관한 연구)

  • Choi, Y.G.;Chung, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • A numerical analysis of initial unsteady state flow and heat transfer in an enclosed cavity has been performed by the Modified QUICK Scheme. The stable QUICK Scheme which modified the coefficient always to be positive is included in this numerical analysis. The implicit method is applied to solve the unsteady state flow; between iterations the PISO (Pressure - Implicit with Splitting of Operators) algorithm is employed to correct and update the velocity and pressure fields on a staggered grid. The accuracy of the Modified QUICK Scheme is proved by applying fewer grid systems than those which Ghia et al. and Davis applied. The initial unsteady mixed convection in an enclosed cavity is analyzed using the above numerical procedure. This study focuses on the development of the large main vortex and secondary vortex in forced convection, the effects of the Rayleigh Number in natural convection and the relative direction of the forced and natural convection.

  • PDF

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

Study on the Exhaust Flow Analysis of Unsteady Flow with Various Exhaust Manifolds and Catalyst Geometries (배기계 형상에 따른 비정상 유동에서의 배기매니폴드와 촉매 입구 유동현상 해석)

  • Lee, Jae-Ho;Kim, Dae-Woo;Kwak, Ho-Chul;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.217-222
    • /
    • 2004
  • In recent year, as the current and future emission regulations go stringent, the research of exhaust manifold and CCC has become the subject of increasing interest and attention. This study is concerned with the systematic approach to improve catalyst flow uniformity and light-off behavior through the basic understanding of exhaust flow characteristics. Computational approach to the unsteady compressible flow for exhaust manifold of 4-1 type and 4-2-1 type and CCC system of a 4-cylinder DOHC gasoline engine was performed to investigate the flow distribution of exhaust gases. In this study, through calculation, the effects of geometric configuration of exhaust manifold on flow structure and its maldistribution in monolith were mainly investigated to understand the exhaust flow patterns in terms of flow uniformity. Based on the design guidance resulting from this fundamental study, the flow uniformity of 4-2-1 type exhaust manifold demonstrated the more improved exhaust characteristics than that of the 4-1 type one.

  • PDF

Development and Accuracy Analysis of the Discharge-Supply System to Generate Hydrographs for Unsteady Flow in the Open Channel (개수로에서의 부정류 수문곡선 재현을 위한 유량공급장치의 개발 및 정확도 분석)

  • Kim, Seo-Jun;Kim, Sang-Hyuk;Yoon, Byung-Man;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.783-794
    • /
    • 2012
  • The analysis for unsteady flow is necessary to design the hydraulic structures affected by water level and discharge changes through time. The numerical model has been generally used for unsteady flow analysis, however it is difficult to acquire field data to calibrate and validate the numerical model. Even though it is possible to collect field data for some case, high cost and labor are required and sometimes it is considered that the confidence of measured data is very low. In this case, the experimental data for unsteady flow can be used to calibrate and validate the numerical model as an alternative. Therefore, the discharge-supply system which could generate various type of unsteady flow hydrograph was developed in this study. Also, the accuracy of the unsteady flow hydrograph generated by developed dischargesupply system in the experiment was evaluated by comparing with target hydrograph. Accuracy errors and Root Mean Square Error (RMSE) were analyzed for the rectangular-type hydrograph with sudden changes of flow, triangular-type hydrograph with short peak time, and bell-type flood hydrograph. As a result, the generating error of the discharge-supply system for the rectangular-type hydrograph was about 59% which was maximum error among various types. Also, it was represented that RMSE for the triangular-type hydrographs with single and double peaks were approximately corresponding to 10%. However, RMSE for the bell-type flood hydrograph was lower than 2%.

A Numerical Study on Unsteady Flowfield around a NACA 0021 Airfoil at High Angles of Attack (고영각 NACA 0021 익형 주위의 비정상 유동장에 대한 수치해석적 연구)

  • Kim, Sang Dug
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.12-17
    • /
    • 2020
  • Even though the benefit of flight at high angle-of-attack is to be able to reduce the speed of flight and maneuvers in complex flight environment, the flight at high angle-of-attack, however, is easy to be in stall which is characterized by sever unsteady flow separation over an airfoil. Current unsteady numerical analysis using DES was conducted to predict the aerodynamic characteristics of a NACA 0021 airfoil at high angle-of-attack conditions. And this provides the comparison with the steady numerical one with the typical turbulence models. The unsteady calculation by DES is appropriate in terms of predicting the aerodynamic performance of NACA 0021 airfoil at high angle-of-attack conditions.

Transient Analysis and Experiment Considering Unsteady Friction and Leakage in a Pipeline System (단일관망에서 누수효과를 고려한 천이류 분석 및 실험)

  • Lee, Mi-Hyun;Song, Yong-Sok;Kim, Sang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1395-1399
    • /
    • 2006
  • The current paper focuses the analysis of leakage detection in water pipeline systems by means of the transient analysis. In order to obtain pressure variation for evaluation the existing methodology, an extensive experimental process has been carried out in a single pipeline system. Several experimental tests were performed with and without a leakage in the system. Using the unsteady friction and improved unsteady friction factors, reasonable match between the computed and measured pressure were presented on the condition of the flow situations. The transient method attempts to estimate the leakage in water pipelines using observed pressure data collected during transient events on the system.

  • PDF