• Title/Summary/Keyword: Unsteadiness

Search Result 83, Processing Time 0.015 seconds

Proposal of Early-Warning Criteria for Highway Debris Flow Using Rainfall Frequency (2): Criteria Adjustment and Verification (확률 강우량을 이용한 고속도로 토석류 조기경보기준 제안 (2) : 기준의 조정 및 적용성 검토)

  • Choi, Jaesoon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.15-24
    • /
    • 2019
  • In the previous study, the rainfall data of 1 hour, 6 hours and 3 days were used as the rainfall criterion according to the grade to trigger the debris flow in the highway area, using the rainfall data of Gangwon area and the rainfall time-series data at the spot where the debris flow occurred. In this study, we propose an early warning criterion of the highway debris flow triggering through appropriate combination of three rainfall criteria selected through previous studies and adjustments of rainfall criterion in the highway debris flow triggering. In addition, simulations were conducted using the time-series rainfall data of 2010~2012, which had a large amount of precipitation for the five sites where debris flows occurred in 2013. As a result of the study, the criteria for the early warning of highway unsteadiness on the highway were prepared. In case of the grade-based adjustment, it is preferable to apply the unified rating to the grade B. Also, if the fatigue of the monitoring is not a problem, adjusting it to A or S may be a way to positively cope with the occurrence of highway debris flow.

Large eddy simulation of a steady hydraulic jump at Fr = 7.3 (Fr = 7.3의 정상도수 큰와모의)

  • Paik, Joongcheol;Kim, Byungjoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1049-1058
    • /
    • 2023
  • The flow passing through river-crossing structures such as weirs and low-fall dams is dominated by rapidly varied flow including hydraulic jump. The intense unsteadiness of flow velocity and free surface profile affects the stability of such hydraulic structures. In particular, the steady hydraulic jump generated at high Froude number conditions includes remarkably air entrainment, making the flow characteristics more complicated. In this study, a large-eddy simulation was performed for turbulence effect and the hybrid VoF technique to simulate the steady hydraulic jump at the Froude number of 7.3 and the Reynolds number of 15,700. The results of the numerical simulation showed that the instantaneous maximum pressure and time-average pressure distribution calculated on the bottom surface downstream of the structure could be reasonably well reproduced being in good agreement with the experimental values. However, the instantaneous minimum pressure distribution in the direct downstream of the structure shows the opposite pattern to the target experimental measurement value. However, the numerical simulation performed in this study is considered to reasonably predict the minimum pressure distributions observed in various experiments conducted at similar conditions. The vertical distributions of flow velocity and air concentration computed in the center of the hydraulic jump were found to be in good agreement with the experimental results measured under similar conditions, showing self-similarity. These results show that the large eddy simulation and hybrid VoF techniques applied in this study can reproduce the hydraulic jump with strong air entrainment and the resulting intense free surface and pressure fluctuations at high Froude number conditions.

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.