• Title/Summary/Keyword: Unstable Operating Region

Search Result 23, Processing Time 0.025 seconds

Dependence of Optical Phase Conjugation on Incident Beam Position and Intensity (입사빔의 위치 및 세기에 따른 자기펌핑 위상공액파의 특성)

  • 손동환;전병욱;이임걸;손정영;임동건
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.43-51
    • /
    • 1993
  • Effects of incident beam position and intensity on self-pumped optical phase conjugation are presented using barium titanate as an optical phase conjugator. Depending on the position of incident beam, the crystal used consists of four major operating regions: irregular pulsing, regular pulsing, stable phase conjugation, and unstable oscillating regions. In the second region, the pulsing frequency and amplitude of phase conjugate beam are proportional to I$_{in}$ and I$_{in}^{0.85}$, respectively, where I$_{in}$ is the incident beam intensity. In the fouth region, the rising time and intensity of the first-generated pulse are proportional to I$_{in}^{0.92}$ and I$_{in}^{0.81}$, respectively. A frequency shift by beam fanning is also discussed by observing interference pattern from an interferometer.

  • PDF

Vibration Optimum Design of Rotor Systems Using Genetic Algorithm (유전 알고리즘을 이용한 회전축계의 진동 최적설계)

  • 최병근;양보석
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.645-653
    • /
    • 1997
  • For high performance rotating machinery, unstable vibrations may occur caused by hydrodynamic forces such as oil film forces, clearance excitation forces generated by the working fluid, and etc. In order to improve the availability one has to take into account the vibrations very accurately. When designing a rotating machinery, the stability behavior and the resonance response can be obtained by calculation of the complex eigenvalues. A suitable modifications of seal and/or bearing design may effectively improve the stability and the response of a rotor system. This paper deals with the optimum length and clearance of seals and bearings to minimize the resonance response(Q factor) and to maximize the logarithmic decrement in the operating speed under the constraints of design variables. Also, for an avoidance of resonance region from the operating speed, an optimization technique has been used to yield the critical speeds as far from the operating speed as possible. The optimization method is used by the genetic algorithm, which is a search algorithm based on the mechanics of natural selection and natural genetics. The results show that the optimum design of seals and bearings can significantly improve the resonance and the stability of the pump rotor system.

  • PDF

Flow Characteristics of Centrifugal Impeller Exit under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.2 s.3
    • /
    • pp.5-12
    • /
    • 1999
  • This study presents the measured unsteady flctuation of impeller discharge flow for a centrifugal compressor in an unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that of the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

Flow Characteristics of centrifugal Impeller Exit Under Rotating Stall (선회실속하의 원심 임펠러 출구 유동 특성)

  • Shin, You-Hwan;Kim, Kwang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.129-134
    • /
    • 1998
  • This study presents the measured unsteady fluctuation of impeller discharge flow for a centrifugal compressor in unstable operating region. The characteristics of the blade-to-blade flow at rotating stall onset were investigated by measuring unsteady velocity fluctuations at several different diffuser axial distances using a hot wire anemometer. The flow characteristics in terms of the radial and tangential velocity components and the flow angle distribution at the impeller exit were analyzed using phase-locked ensemble averaging techniques. As a result, increase or decrease of the radial velocity component during the rotating stall is dominated by that on the suction side. The radial velocity distributions show the opposite trends in the regions where the radial velocity during rotating stall onset increases and decreases.

  • PDF

Experimental Study on the Mean Flow Characteristics of Forward-Curved Centrifugal Fans

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1728-1738
    • /
    • 2001
  • Measurements have been made in an automotive HVAC b1ower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements stowed that performance coefficients are strongly influenced by flow characteristics at the throat region. The main flow features ware common in both fans, but improved performance is achieved with tole new fan rotor, particularly in lower flow rate legions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior ware most important.

  • PDF

Analysis of Nutrition Teachers' Awareness of Necessity for an Operating School Meal Support Center in Chungnam (충남 영양(교)사의 학교급식지원센터 운영 필요성에 대한 인식 분석)

  • Kim, Jonghwa
    • Korean Journal of Community Nutrition
    • /
    • v.23 no.6
    • /
    • pp.506-515
    • /
    • 2018
  • Objectives: We investigated the operation needs of school meal support centers (SMSC) in Chungnam-do based on analysis of nutrition teachers' perception of them. Methods: The Chungnam government established the first SMSC in 2012. Thirteen SMSCs are currently being operated in Chungnam-do. To analyze the results quantitatively, we investigated nutrition teachers opinions regarding the necessity for SMSCs as a dependent variable and derived the independent variables based on the causal relationships with dependent variables using the ordered logit model. Those independent variables included region, school type, number of students, attitude regarding free meal policy, satisfaction with school meal policy, and preference for local food. Results: Briefly, teachers in the region in which the SMSC was located more strongly supported the SMSC. In addition, teachers in public schools with a smaller number of students believed that having a SMSC is more beneficial, and that other variables also affected the necessity for SMSCs. Moreover, nutrition teachers preferred local foods rather than organic foods because of the unstable supply of organic foods. Conclusions: Based on the results of this study, it was recommended that the local government implement the policy consistently. Moreover, it was recommended that the government operate the SMSC more efficiently, enhance the roles of the SMSC as the local organization responsible for student nutritional planing and expand the coverage of agricultural products.

Development of a Large-Scale Hot Water Production System Using a Natural Circulation Loop (자연순환회로를 이용한 대형 온수생산 시스템의 개발)

  • 반태곤;이주동;이상천;김영길
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.233-241
    • /
    • 1999
  • A large-scale hot water production system using a natural circulation loop was developed. A computer simulation program was developed to design and evaluate thermal performance of the natural circulation system for hot water production. An experimental apparatus was set up and was tested against various conditions to exhibit a stable operating region of the natural circulation loop. When the system was a stable state for heating rate (695 ㎾) and feed water was circulated at 0.3 $\ell$/s constantly. A unstable state was checked by experiment and that time flow rate was oscillated with 0.4∼0.6 $\ell$/s. The result showed that the program can predict the thermal performance of the large-scale hot water system using the natural circulation loop and can be utilized to design the system.

  • PDF

A Study on the Quench Propagation Properties of Bi-2223 Wire cooled in Liquid Nitrogen (액체질소로 냉각된 Bi-2223 선재의 퀜치 전파 특성에 관한 연구)

  • Yoon Kyung Yong;Bae Duck Kweon;Ahn Min Cheol;Kang Hyung Ku;Lee Chan Joo;Yoon Yong Soo;Lee Sang Jin;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 2005
  • With the successful commercialization of Bi-2223 powder-in-tube wire , various attempts in the R & D of the high-Tc superconducting (HTS) magnets for high magnetic field applications are being implemented actively. Operating temperature of HTS magnet has to be maintained at the designed level but the magnetic energy and mechanical disturbance can cause unstable operational temperature of HTS magnet. Especially the generated heat energy of inner HTS winding Is apt to be accumulated . so the normal region appears in HTS winding. This paper deals with the quenching characteristics of three kinds of selected Bi-2223 wires : the High Current Density Wire (HC-A) and the High Strength Wire (HS-A) made by AMSC and HTS wire(HW-I) made by Innost The Innost wire has the highest minimum quench energy (MQE). The High Current Density Wire has the highest normal zone Propagation velocity (NZPV).

A Study on the Method of Gain Setting of Digital Governor by Dynamic Calculation for Marine Prime Movers (선박 주기관 디지털 거버너의 동적 게인 설정법에 관한 연구)

  • 강인철;최순만;최재성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.251-259
    • /
    • 2002
  • The design concept of diesel engines for sea-going ships has been directed to Low-speed/Long-Stroke type to improve the efficiencies of combustion and propelling. But the time-delay property inevitable at such low speed engines gives much difficulties for governors to control the engine speed because they would be apt to go into unstable region especially when operating at low speed. The purpose of this paper is to study the problem of how the governor gain can be calculated dynamically in accordance with the variance of engine speed at least for an engine to be stable. In this study, the property of diesel engine was described as composed of combustion element including dead time and rotating element, and the ultimate gain for the speed control system to be located on the condition of stability limit was proposed based on the frequency characteristics. And the target gains with optimized stability also were proposed by giving proper margin to these ultimate conditions. The results were applied to a model system and the availability was confirmed to be satisfactory.

  • PDF

A Study On the Gain Setting of a Digital Governor for Marine Diesel Engines by Dynamic Calculation (선박 주기관 디지털 거버너의 동적 이득 설정에 관한 연구)

  • 강인철;최순만;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.565-572
    • /
    • 2002
  • The design concept of diesel engines for sea-going ships has been directed to Low-speed/Long-Stroke type to improve the efficiencies of combustion and propelling. But time-delay inevitable at low speed gives much difficulties for governors to control the engine speed because they would be apt to go into unstable region especially when operating at low speed. The purpose of this paper is to study the problem of how the governor gain can be calculated dynamically in accordance with the valiance of engine speed to locate the engine still on the properly stable condition. In this study, the property of diesel engine was described as composed of combustion element including dead time and rotating element, and the ultimate gain for the speed control system to be located on the condition of stability limit was proposed based on the frequency characteristics. And the target gains with optimized stability also were proposed by giving proper margin to these ultimate conditions. The results were applied to a model system and the availability was confirmed to be satisfactory.