• Title/Summary/Keyword: Unscented 칼만 필터

Search Result 40, Processing Time 0.031 seconds

CenterTrack-EKF: Improved Multi Object Tracking with Extended Kalman Filter (CenterTrack-EKF: 확장된 칼만 필터를 이용한 개선된 다중 객체 추적)

  • Hyun-Sung Yang;Chun-Bo Sim;Se-Hoon Jung
    • Smart Media Journal
    • /
    • v.13 no.5
    • /
    • pp.9-18
    • /
    • 2024
  • Multi-Object trajectory modeling is a major challenge in MOT. CenterTrack tried to solve this problem with a Heatmap-based method that tracks the object center position. However, it showed limited performance when tracking objects with complex movements and nonlinearities. Considering the degradation factor of CenterTrack as the dynamic movement of pedestrians, we integrated the EKF into CenterTrack. To demonstrate the superiority of our proposed method, we applied the existing KF and UKF to CenterTrack and compared and evaluated it on various datasets. The experimental results confirmed that when EKF was integrated into CenterTrack, it achieved 73.7% MOTA, making it the most suitable filter for CenterTrack.

Nonlinear System State Estimating Using Unscented Particle Filters (언센티드 파티클 필터를 이용한 비선형 시스템 상태 추정)

  • Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1273-1280
    • /
    • 2013
  • The UKF algorithm for tracking moving objects has fast convergence speed and good tracking performance without the derivative computation. However, this algorithm has serious drawbacks which limit its use in conditions such as Gaussian noise distribution. Meanwhile, the particle filter(PF) is a state estimation method applied to nonlinear and non-Gaussian systems without these limitations. But this method also has some disadvantages such as computation increase as the number of particles rises. In this paper, we propose the Unscented Particle Filter (UPF) algorithm which combines Unscented Kalman Filter (UKF) and Particle Filter (PF) in order to overcome these drawbacks.The performance of the UPF algorithm was tested to compare with Particle Filter using a 2-DOF (Degree of Freedom) Pendulum System. The results show that the proposed algorithm is more suitable to the nonlinear and non-Gaussian state estimation compared with PF.

MEMS 기반 관성항법장치의 칼만 필터 설계 문제점과 해결방안 고찰

  • Im, Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2011.11a
    • /
    • pp.191-192
    • /
    • 2011
  • MEMS 기반 관성 센서를 이용한 항법장치를 개발하는 경우, 칼만 필터(Kalman Filter, KF) 구축 여부에 따라 그 성능이 결정된다. 특히 해상에서 이러한 MEMS 기반 관성항법 장치를 사용하는 경우에는, 육상과 달리 다양한 제약조건이 따르게 된다. KF는 선형과 비선형으로 구분되고, 비선형은 다시 확장 KF와 Unscented KF, Particle KF 등 다양한 것이 연구 개발되어 있는데, 해상에 적용하기 위해서는 이러한 다양한 필터들의 특징과 추가 요청사항 등을 사전 조사할 필요가 있다. 본 연구에서는 기존 개발된 KF를 조사하여 해상용 MEMS 기반 관성 항법장치를 개발하는 경우 필요한 필터 구성 방법을 조사하여 문제점을 살펴보고, 이 문제 해결을 위한 방안을 검토하였다.

  • PDF

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

Accurate State of Charge Estimation of LiFePO4 Battery Based on the Unscented Kalman Filter and the Particle Filter (언센티드 칼만 필터와 파티클 필터에 기반한 리튬 인산철 배터리의 정확한 충전 상태 추정)

  • Nguyen, Thanh-Tung;Awan, Mudassir Ibrahim;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.126-127
    • /
    • 2017
  • An accurate State Of Charge (SOC) estimation of battery is the most important technique for Electric Vehicles (EVs) and Energy Storage Systems (ESSs). In this paper a new integrated Unscented Kalman Filter-Particle Filter (UKF-PF) is employed to estimate the SOC of a $LiFePO_4$ battery cell and a significant improvement is obtained as compared to the other methods. The parameters of the battery is modeled by the second order Auto Regressive eXogenous (ARX) model and estimated by using Recursive Least Square (RLS) method to calculate value of each element in the model. The proposed algorithm is established by combining a parameter identification technique using RLS method with ARX model and an SOC estimation technique using UKF-PF.

  • PDF

Indoor Localization Using Unscented Kalman/FIR Hybrid Filter (언센티드 칼만/FIR 하이브리드 필터를 이용한 실내 위치 추정)

  • Pak, Jung Min;Ahn, Choon Ki;Lim, Myo Taeg;Song, Moon Kyou
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1057-1063
    • /
    • 2015
  • This paper proposes a new nonlinear filtering algorithm that combines the unscented Kalman filter (UKF) and the finite impulse response (FIR) filter. The proposed filter is called the unscented Kalman/FIR hybrid filter (UKFHF). In the UKFHF algorithm, the UKF is used as the main filter, which produces state estimates under ideal conditions. When failures of the UKF are detected, the FIR filter is operated. Using the output of the FIR filter, the UKF is reset and rebooted. In this way, the UKFHF recovers from failures. The proposed UKFHF is applied to indoor human localization using wireless sensor networks. Through simulations, the performance of the UKFHF is demonstrated in comparison with that of the UKF.

Sensorless Speed Control of IPMSM Using Unscented Kalman Filter (엔센티드 칼만필터를 이용한 IPMSM의 센서리스 속도제어)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1865-1874
    • /
    • 2013
  • In this paper, a design method of speed and position estimator based on unscented Kalman filter is proposed for the no sensor control of IPMSM(Interior Permanent Magnet Synchronous Motor). The proposed method is simple more than the estimator designed with rotation axis for current measurement. Also the proposed state estimator is designed including nonlinear terms of the estimator. The controller which constructed using nonlinear back-stepping control method is operated speed and current control using the estimated speed and currents information. Through simulation, the performance of the designed estimator is compared to the estimator which is designed to synchronize d-q axis.

Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter (무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.

Flight Path Measurement of Drones Using Microphone Array and Performance Improvement Method Using Unscented Kalman Filter (마이크로폰 어레이를 이용한 드론의 비행경로 측정과 무향칼만필터를 이용한 성능 개선법에 대한 연구)

  • Lee, Jiwon;Go, Yeong-Ju;Kim, Seungkeum;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.975-985
    • /
    • 2018
  • The drones have been developed for military purposes and are now used in many fields such as logistics, communications, agriculture, disaster, defense and media. As the range of use of drones increases, cases of abuse of drones are increasing. It is necessary to develop anti-drone technology to detect the position of unwanted drones using the physical phenomena that occur when the drones fly. In this paper, we estimate the DOA(direction of arrival) of the drone by using the acoustic signal generated when the drone is flying. In addition, the dynamics model of the drones was applied to the unscented kalman filter to improve the microphone array detection performance and reduce the error of the position estimation. Through simulation, the drone detection performance was predicted and verified through experiments.