• Title/Summary/Keyword: Unsaturated soils

Search Result 266, Processing Time 0.029 seconds

Effects of pH-Eh on Natural Attenuation of Soil Contaminated by Arsenic in the Dalchen Mine Area, Ulsan, Korea (비소로 오염된 달천광산 토양의 자연저감 능력에 대한 pH-Eh영향)

  • Park Maeng-Eon;Sung Kyu-Youl;Lee Minhee;Lee Pyeong-Koo;Kim Min-Chul
    • Economic and Environmental Geology
    • /
    • v.38 no.5 s.174
    • /
    • pp.513-523
    • /
    • 2005
  • The contamination of soils and groundwaters in the Dalcheon mine area, Ulsan, is investigated, and a natural attenuation capacity on redox and pH is evaluated. Arsenopyrite, the major source of arsenic pollution in the Dalcheon mine area, is contained up to $2\%$ in tailings. Furthermore, As-bearing minerals such as loellingite, nicolite, rammelsbergite, gersdorffite cobaltite and pyrite are also source of arsenic contamination, which show various concentration of arsenic each other. Surface of pyrite and arsenopyrite in tailings partly oxidized into Fe-arsenates and Fe-oxides, which means a progressive weathering process. There is no relationship between pH and arsenic content in groundwaters, otherwise Eh and arsenic concentration in unsaturated and saturated groundwater shows positive relationship. RMB (Red Mud Bauxite) could be useful as a trigger on natural attenuation due to superior ability of removal capacity of arsenic when contaminated soil and groundwater in the Dalcheon mine area are remediated.

Landslide Analysis of River Bank Affected by Water Level Fluctuation II (저수위 변동에 영향을 받는 강기슭의 산사태 해석 II)

  • Kim, You-Seong;Wang, Yu-Mei;Choi, Jae-Seon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.87-93
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, the pore water pressure files obtained from seepage analysis were used to evaluate the change in factor of safety (FS) with reservoir water level. Slope stability analyses then were carried out, with fully specified slip surface and limit equilibrium method. In the limit equilibrium analysis, the contribution of negative pore water pressure to shear strength was considered by the use of Fredlund's shear strength equation for unsaturated soils. On the base of the analyses, the change of FS with reservoir water level was interpreted in detail. It was found that FS against bank slopes decreases with the rise of the reservoir water level and increases with the drawdown of the reservoir water level. The most dangerous state was when the reservoir water level stays at the highest for a long time.

  • PDF

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Experimental Methodology and Calibration of TDR (시간영역 광전자파 분석기(Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 실험방법 및 검정)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.699-712
    • /
    • 1996
  • Field scale experiments using an automated 144-channel TDR system were conducted which monitored the movement of solute through unsaturated loamy soils. The experiments were carried out on two different field plots of 0.54 ha to study the vertical movement of solute plume created by applying a square pulse of $CaCl_2$ as a tracer. The residence concentration was monitored at 24 locations on a transect and 5 depths per location by horizontally-positioning 50 cm long triple wire TDR probes to study the heterogeneity of solute travel times and the governing transport concept at field scale. This paper describes details of experimental methodology and calibration aspects of the TDR system. Three different calibration methods for estimation of solute concentration from TDR-measured bulk soil electrical conductivity were used for each field site. Data analysis of mean breakthrough curves (BTCs) and parameters estimated using the convection-dispersion model (CDE) and the convective-lognormal transfer function model (CLT) reveals that the automated TDR system is a viable technique to study the field scale solute transport providing a normal distribution of resident concentration in a high resolution of time series, and that calibration method does not significantly affect both the shape of BTC and the parameters related to the peak travel time. Among the calibration methods, the simple linear model (SLM), a modified version of Rhoades' model, appears to be promising in the calibration of horizontally-positioned TDR probes at field condition.

  • PDF

Investigation of the fate of inorganic nitrogens in the near field of bank filtration site (강둑여과지 주변의 밭에 살포된 무기질소의 거동 연구)

  • 공인철;배진희;안호준;권오억;김승현;이철희;박영규
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.11-20
    • /
    • 1998
  • Inorganic nitrogens resulting from fertilizers are possible contaminants of bank-filtered ground water, which is an alternative source of safe drinking water. We conducted a laboratory study to determine the fate of inorganic nitrogens in the near field of bank filtration sites and we consequently illustrated the effects of these possible contaminants on the water quailty of bank filtration. Soil properties were found to be well equivalent to those of other cultivated field soils in Korea. Surface soil pH was about 4.3 which is slightly lower than average level. Overall, diverse concentrations of $NO_3$-N and $NH_3$-N were measured, and $NO_2$-N was nearly undetected. $NH_3$-N level in the field decreased, while $NO_3$-N increased along with increasing depth of unsaturated zone. Numbers of viable and nitrifying bacteria ranged from 6.73$\times$$10^{6}$to 10.7$\times$$10^{6}$ and 0.44$\times$$10^{4}$ to 5.21$\times$$10^{4}$ respectively, and both of them were highly correlated ($R^{2}$=0.992). Nitrifying potential assayed by batch test showed relatively lower than other reported results. The oxygen uptake potential of surface and subsurface soil was measured in the presence of ${(NH_4)_2}$$SO_4$. The results demonstrated that surface soil required shorter lag period and uptaked more oxygen than subsurface's.

  • PDF

Assessment of Continuous Pressurization Method for Soil-water Characteristic Curve (연속 가압 함수특성 시험 평가에 관한 연구)

  • Park, Hyun-Su;Kim, Byeong-Su;Lee, Eo-Ryeong;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.5-13
    • /
    • 2019
  • The soil-water characteristic curve (SWCC) plays an important role in determining the soil suction parameters required to predict the seepage or shear behaviors of unsaturated soils. In addition, path dependency of the SWCC affects the mechanical and hydrologic behaviors. In general, there is a disadvantage that it takes a long time to measure both the drying and wetting paths of the SWCC by a stepwise pressurization method. Thus, the continuous pressurization method as an improved testing method for the SWCC was suggested, and the testing time for two paths of the SWCC was significantly shorter than the conventional methods. For the applicability evaluation of this method, the results of the SWCC obtained by the stepwise pressurization method and the evaporation method in this study were compared to the result obtained from this method. As a result, it was found that the difference among three methods was negligible, and the testing time of the continuous pressurization method was greatly decreased. Therefore, it can be said that it is possible to quickly and accurately measure the SWCC under various conditions by the continuous pressurization method.

Characteristics of Sand-Silt Mixtures during Freezing-Thawing by using Elastic Waves (탄성파를 이용한 모래-실트 혼합토의 동결-융해 특성)

  • Kang, Mingu;Kim, Sangyeob;Hong, Seungseo;Kim, Youngseok;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.47-56
    • /
    • 2014
  • In winter season, the pore water inside the ground freezes and thaws repetitively due to the cold air temperature. When the freezing-thawing processes are repeated on the ground, the change in soil particle structure occurs and thus the damage of the infrastructure may be following. This study was performed in order to investigate the stiffness change of soils due to the freeze-thaw by using elastic waves. Sand-silt mixtures are prepared with in the silt fraction of 40 %, 60 % and 80 % in weight and in the degree of saturation of 40 %. The specimens are placed into the square freezing-thawing cell by the temping method. For the measurement of the elastic waves, a pair of the bender elements and a pair of piezo disk elements are installed on the cell, and a thermocouple is inserted into soils for the measurement of the temperature. The temperature of the mixtures is decreased from $20^{\circ}C$ to $-10^{\circ}C$ during freezing, is maintained at $-20^{\circ}C$ for 18 hours, is gradually increased up to the room temperature of $20^{\circ}C$ to thaw the specimens. The shear waves, the compressional waves and the temperature are measured during the freeze-thaw process. The experimental result indicates that the shear and the compressional wave velocities after thawing are smaller than those of before freezing. The velocity ratio of after thawing to before freezing of shear wave is smaller than that of the compressional wave. As silt fraction increases from 40 % to 80 %, the shear and compressional wave velocities are gradually increased. This study suggests that the freezing-thawing process in unsaturated soil loosens the soil particle structure, and the shear wave velocity reflects the effect of freezing-thawing more sensitively than the compressional wave velocity.