• Title/Summary/Keyword: Unsaturated soil condition

Search Result 104, Processing Time 0.025 seconds

Case Study on the Instability of the Slopes in Unsaturated Residual Soils Considering the Rainfall Characteristics (강우특성을 고려한 불포화 잔적토 비탈면의 붕괴사례 연구)

  • Nam, Samheon;Lee, Younghuy;Oh, Seboong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.45-53
    • /
    • 2015
  • This study has obtained Soil Water Retention Curve (SWRC) of the unsaturated soil from the volumetric pressure plate extractor test and the triaxial compression tests was also conducted. By using the rainfall data measured in the site the seepage analysis of unsteady flow was performed with the program of SEEP/W in Geostudio 2007 and stability of the slope was analyzed with SLOPE/W program. Results of analyses show that shear strength of the unsaturated soil increases with the increase of matric suction. And it was also found that the net volumetric stress and the apparent cohesion increased with the matric suction. The seepage analysis of rainfall represents that the increasing rate of negative pore pressure at the zone of large negative pore pressure is appeared to be high even though lower rainfall intensity, but this tendency declines with ground depth. The stability analysis of slope was carried out for the actual plane of failure with the data representing the field condition. The factor of safety thus calculated was about unity (1.0) or just below, which means that the adopted method of analysis is in good agreement with the field condition.

Reduction of Organics in an Unsaturated Zone Using Zero-Valent Metals (영가금속을 이용한 불포화대에서 유기물질의 환원적 분해)

  • Kim, Jong-Gun;Kwon, Hee-won;Kim, Jeong-Jin;Hwang, In-Seong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Environmental contamination by organic compounds are not only restricted to water, but extends to soil and groundwater as well. However, highly oxidized compounds, such as halogenated organics and nitro-compounds, can be detoxified employing reducing methods. Permeable reactive barrier is one of the representative technologies where zero-valent metals (ZVMs) are employed for groundwater remediation. However, organics contaminates often contaminate the unsaturated zone above the groundwater. Despite the availability of technologies like soil vapor extraction and bioremediation, removing organic compounds from this zone represents several challenges. In this study, the reduction of nitrobenzene to aniline was achieved using zero-valent iron (ZVI) under unsaturated conditions. Results indicated that the water content was an important variable in this reaction. Under dry conditions (water content = 0.2%), the reduction reaction was inhibited; however, when the water content was between 10% and 25% (saturated condition), ZVI can reduce nitrobenzene. Palladized iron (Pd/Fe) can be used to reduce nitrobenzene when the water content is between 2.5% and 10%. The reaction was evaluated over a wide range of temperatures (10 - 40 ℃), and the results indicated that increasing the temperature resulted in increased reaction rates under unsaturated conditions.

A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1998
  • Monitoring solute transport has been known to be difficult especially for the unsaturated soil. The object of this study is to investigate the TDR application to monitoring solute concentration in the vadose zone. The TDR calibration test was conducted for soil samples with various water contents and concentrations. The voltage attenuation of electromagnetic wave of TDR was used to estimate the bulk electrical conductivity of a soil. The relationship between the bulk soil electrical conductivity and the solute concentration was assumed to be linear at a constant volumetric soil water content. In this study four proposed relationships were compared using data obtained from KCI solution at three different concentrations. Relationships given by Topp, Daltaon, Yanuka showed the linearity between the bulk soil electrical conductivity and the solute concentration, which were more pronounced than Zegelin's. The three relationships were found to be useful to measure the solute concentration in the vadose zone. In addition, TDR method was proven to be a viable technique in monitoring solute transport through unsaturated soils in transient flow condition.

  • PDF

Estimation of Seepage Rate through Core Zone of Rockfill Dam (중심코어형 사력댐의 코어죤 침투량 예측기법)

  • Lee, Jong-Wook;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2010
  • Seepage rate through the core zone of rockfill dam, estimated from graphical technique and the equation by Sakamoto (1998), is different from the real condition because of neglecting unsaturated flow. With existing method to estimate total seepage rate, it is difficult to understand the tendency of total seepage rate changes by reservoir water level change. Steady state seepage rate and the factors affecting the time needed to attain to changes of reservoir water level and saturated hydraulic conductivity and unsaturated hydraulic properties of core material are analysed thorough the 2-D steady and unsteady state seepage analyses of Soyanggang dam. Numerical results revealed that the seepage rate can be expressed by the linear equation form and the value of unsaturated soil parameter n is the most important factor affecting the seepage rate and the time needed to attain steady state. The estimation method presented in this study can be used by the designer and the personnel of dam safety for convenient estimation of seepage rate and quantitative analysis of measured seepage rate without 2-D and 3-D numerical analyses.

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Analysis on Failure Critical Depth of Unsaturated Landslide Zone According to the Geological Condition (지질별 불포화토 사면의 붕괴 임계심도 분석)

  • Nam, Koung-Hoon;Kim, Min-Gyu;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.299-304
    • /
    • 2015
  • Slope stability analysis of unsaturated soil slopes due to rainfall infiltration is an important issue in evaluating landslide analysis and stability assessment. The purpose of this study is to establish the critical depth considering weathered soil of parent rock and rainfall intensity at main scarp in national landslide. Based on the analytical results, it is found that as rainfall duration and Slope angle increased, the critical depth of gneiss-weathered soil increased from 3.00 m to 3.77 m, the critical depth of granite weathered-soil increased from 1.75 m to 2.40 m, and the critical depth of mudstone-weathered soil increased from 3.00 m to 4.15 m, respectively. The critical depth of granite-weathered soil with low cohesion and high internal friction angle is much lower than those of other soils. It is interestingly shown that a decrease in the safety factor is highly significant, much affected by the slope increase rather than the rainfall intensity.

Influence of Saturation and Soil Density on the Ground Subsidence Using Distinct Element Method (개별요소법을 통한 지반의 포화도와 밀도가 함몰에 미치는 영향 평가)

  • Kim, Yeonho;Kim, Hyunbin;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.27-36
    • /
    • 2018
  • The collapse behavior of ground subsidence caused by continuous loss of particles depends on the saturated condition and density of the ground. In this study, types of ground subsidence were classified based on the saturated condition and each type was performed on the different relative density to analyze the influence factors on the collapse behavior by distinct element method. According to analysis results, the relatively small amount of settlement occurred on the dense ground and a cavity was created under dense-unsaturated ground. In contrast, loose ground showed the large amount of settlement and collapsed immediately without cavity formation even if the unsaturated ground was simulated. The results demonstrated that because the relative density has influence on the mechanical interlocking and saturated condition has influence on the inter-particle force, these are important factors to change the collapse behavior.

A study on the Stability Analysis of Slope in Unsaturated Soil Based on the Soil-Water characteristic curve (함수특성곡선을 고려한 불포화토 사면의 안정성 연구)

  • Yoon, Min-Ki;Kim, Jong-Sung;Kim, Hyo-Jung;Lee, Yeong-Saeng
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1029-1037
    • /
    • 2008
  • The finite element analysis of transient water flow through unsaturated soils was used to investigate effects of hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration on water pressure in slopes. The finite element method with shear strength reduction technique was used to evaluate the stability of slopes under rainfall. The slope-related disasters in Korea usually occur between July and September during the typhoon and localized heavy rain. This means that the rainfall is the most important factor that leads to the slope-related disasters. The slope-related disasters can happen at very short time and lead to big damage. To forecast the change of the heave of the groundwater in slope the Seep/w program was used.

  • PDF

Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model (평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구)

  • Han, Eunseon;Lee, Chulho;Choi, Hyun-Jun;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.93-107
    • /
    • 2013
  • Thermal conduction of the particulate composites or granular materials can be widely used in porous materials and geotechnical engineering. And it has continued to develop "effective thermal conductivity" of medium by modeling energy relationship among particles in medium. This study focuses on the development of the effective thermal conductivity at the unsaturated conditions of soils using the modified network model approach assisted by synthetic 3D random packed systems (DEM method, Discrete Element Method) at the particle scale. To verify the network model, three kinds of glass beads and the Jumunjin sand are used to obtain experimental values at various unsaturated conditions. The PPE (Pressure Plate Extractor) test is then performed to obtain SWCC (Soil-Water Characteristic Curve) of soil samples. In the modified network model, SWCC is used to adjust the equivalent radius of thermal cylinder at contact area between particles. And cutoff range parameter to define the effective zone is also adjusted according to the SWCC at given conditions. From a series of laboratory tests and the proposed network model, the modified network model which adopts a SWCC shows a good agreement in modeling thermal conductivity of granular soils at given conditions. And an empirical correlation between the fraction of the mean radius (${\chi}$) and thermal conductivity at given saturated condition is provided, which can be used to expect thermal conductivity of the granular soils, to estimate thermal conductivity of granular soils.

Frost Heaving in Artificial Ground Freezing

  • 생뢰효박
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03b
    • /
    • pp.13-46
    • /
    • 1994
  • Artificial ground freezing methods have been applied to geotechnical construction projects for stabilizing earth materials and controlling water seepage into the ground. However, this can result in frost heaving and causes the same engineering problems as encountered with the natural freezing of soil. In natural freezing, the ground freezes from the surface downward. When artificial ground freezing is applied at a deep location, however, freezing is limited locally. The soil condition differs between them as follows: Natural freezing - unsaturated and without overburden pressure. Artificial freezing -- saturated and under overburden pressure. The authors investigated the practical application of artificial ground freezing and examined the frost behaviour of a saturated soil under overburden pressure. This paper presents the results obtained from experiments concerning frost heaving and discusses frost heaving at the freezing site.

  • PDF