• Title/Summary/Keyword: Unsaturated Polyester resin

Search Result 133, Processing Time 0.024 seconds

Properties of Strength and Stress-Strain of Recycled-Plastic Polymer Concrete (폐플라스틱 재활용 폴리머콘크리트의 강도와 응력-변형률 특성)

  • Jo Byung-Wan;Koo Jakap;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.329-334
    • /
    • 2005
  • The use of Polymer Concrete (PC) is growing very rapidly in many structural and construction applications such as box culverts, hazardous waste containers, trench lines, floor drains and the repair and overlay of damaged cement concrete surfaces in pavements, bridges, etc. However, PC has a defect economically because resin which be used for binder is expensive. Therefore the latest research is being progressed to replace existing resin with new resin which can reduce the high cost. Here, Polymer concrete using the recycled PET(polyethylene terephthalate) has some merits such as decrease of environmental destruction, decrease of environmental pollution and development of new construction materials. The variables of this study are amount of resin, curing condition and maximum size of coarse aggregate to find out mechanic properties of this. Stress-strain curve was obtained using MTS equipment by strain control. The results indicated that modulus of elasticity was increased gradually in an ascending branch of curve, as an increase of resin content. Compressive strength was the highest for resin content of $13\%$. And Compressive strength was increased as maximum size of coarse aggregate increases. The strain at maximum stress increases with an increase of resin content and size of coarse aggregate. For the descending branch of stress-strain curve the brittle fracture was decreased when it was cured at the room temperature compared to high temperature.

Mechanical Characteristics of Recycled PET Polymer Concrete with Demolished Concrete Aggregates (PET와 재생골재를 이용한 폴리머콘크리트의 역학적 특성)

  • Jo Byung-Wan;Lee Du-Wha;Park Seung-Kook
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.335-342
    • /
    • 2005
  • In this paper, fundamental properties of Polymer Concrete(PC), made from unsaturated polyester resin based on recycled PET and recycled aggregate were investigated. Mechanical properties include strength, modulus of elasticity, and chemical resistance. Resins based on recycled PET and recycled aggregate offer the possibility of low source cost for forming useful products, and would also help alleviate an environmental problem and save energy. The results of test for resin contents and recycled aggregate ratio we, first, the strength of Polymer Concrete made with resin based on recycled PET and recycled aggregate increases with resin contents relatively, however beyond a certain resin contents the strength does not change appreciably, Second, the relationship between the compressive strength and recycled aggregate ratio at resin $9\%$ has a close correlation linearly whereas there is no correlation between the compressive strength and the flexural strength of RPC with recycled aggregate ratio. Third, the effect of acid resistance at resin $9\%$ was found to be nearly unaffected by HCI, whereas the PC with $100\%$ recycled aggregate showed poor acid resistance. Unlike acid, alkali nearly does not seem to attack the RPC as is evident from the weight change and compressive strength. And last, In case of stress-strain curve of polymer concrete with $100\%$ of natural aggregate and $100\%$ recycled aggregate it is observed the exceptional behavior resulting in different failure mechanisms of the material under compression.

Engineering properties of permeable polymer concrete for pavement using powdered waste glass as filler (폐유리분말을 충전재로 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Kim, Tae-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.145-151
    • /
    • 2011
  • This study was performed to evaluate the void ratio, compressive and flexural strength, and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The void ratio and permeability coefficient of permeable concrete for pavement was decreased with increasing the powdered waste glass, respectively. The compressive strength and flexural strength was increased with increasing the powdered waste glass, respectively. In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Therefore, powdered waste glass and recycled coarse aggregate can be used for permeable polymer pavement.

Engineering Properties of Carbon Fiber and Glass Fiber Reinforced Recycled Polymer Concrete (탄소섬유 및 유리섬유로 보강한 재생 폴리머 콘크리트의 공학적 특성)

  • Noh, Jin Yong;Sung, Chan Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • This study was performed to evaluate engineering properties of carbon and glass fiber reinforced recycled polymer concrete. Fiber reinforced recycled polymer concrete were used recycled aggregate as coarse aggregate, natural aggregate as fine aggregate, $CaCO_3$ as filler, unsaturated polyester resin as binder, and carbon and glass fiber as fibers. The compressive and flexural strength of carbon fiber reinforced recycled polymer concrete were in the range of 68~81.5 MPa and 19.1~21.5 MPa at the curing 7days. Also, the compressive and flexural strength of glass fiber reinforced recycled polymer concrete were in the range of 69.4~85.1 MPa and 19~20.1 MPa at the curing 7days. Abrasion ratio of carbon and glass fiber reinforced recycled polymer concrete were decreased 21.6 % and 11.6 % by fiber content 0.9 %, respectively. After impact resistance test, drop numbers of initial and final fracture were increased with increase of fiber contents. Accordingly, carbon fiber and glass fiber reinforced recycled polymer concrete will greatly improve the hydraulic structures, underground utilities and agricultural structures.

A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites (비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF

Engineering Properties of Permeable Polymer Concrete With Stone Dust and Fly Ash (석분과 플라이 애쉬를 혼입한 투수용 폴리머 콘크리트의 공학적 성질)

  • 성찬용;정현정
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.4
    • /
    • pp.147-154
    • /
    • 1996
  • This study wag performed to evaluate the engineering properties of permeable polymer concrete with stone dust and fly ash and unsaturated polyester resin. The following conclusions were drawn. 1. The highest strength was achieved by stone dust filled permeable polymer concrete, it was increased 17% by compressive strength, 188% by bending strength than that of the normal cement concrete, respectively. 2. The water permeability was in the range of 3.O76~4.152${\ell}/ cm{^2}/h$, and it was largely dependent upon the mix design. These concrete can be used to the structures which need water permeability. 3. The static modulus of elasticity was in the range of $1.15{\times} 10^5kg/cm^2$, which was approximately 53 56% of that of the normal cement concrete. 4. The poisson's number of permeable polymer concrete was in the range of 5.106~5.833, which was less than that of the normal cement concrete. 5. The dynamic modulus of elasticity was in the range of $1.29{\times} 10^5~1.5{\times} 10^5 kg/cm^2$, which was approximately less compared to that of the normal cement concrete. Stone dust filled permeable polymer concrete was showed higher dynamic modulus. The dynamic modulus of elasticity were increased approximately 7~13% than that of the static modulus. 6. The compressive strength, bending strength, elastic modulus, poisson's ratio, longitudinal strain and horizontal strain were decreased with the increase of poisson's number and water permeability at those concrete.

  • PDF

Engineering Properties of Permeable Polymer Concrete for Pavement using Powdered Waste Glass and Recycled Coarse Aggregate (폐유리분말과 재생골재를 사용한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Kim, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.59-65
    • /
    • 2011
  • This study was performed to evaluate the compressive and flexural strength, void ratio and permeability coefficient used powdered waste glass, $CaCO_3$, recycled coarse aggregate and unsaturated polyester resin to find optimum mix design of permeable polymer concrete for pavement. The compressive and flexural strength of permeable polymer concrete for pavement using powdered waste glass were in the range of 16.8~19.7 MPa and 4.7~6.1 MPa, respectively. it was satisfied the regulation of permeable concrete for pavement (18 MPa and 4.5 MPa). The void ratio and permeability coefficient were decreased with increasing the powdered waste glass, respectively. The void ratio and permeability coefficient were satisfied national regulation of permeable concrete for pavement (8 % and $1{\times}10^{-2}$ cm/s). In addition, this study found out that required amount of binder was decreased with increasing the powdered waste glass. This fact is expected to have economical effects during the use of powdered waste glass in the manufacture of permeable polymer concrete for pavement. Accodingly, the powdered waste glass can be used for permeable concrete material.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Adhesive Strength and Setting Shrinkage of UP Polymer Mortar Intermixed with Waste Rubber Powder (폐고무분말을 혼입한 UP 폴리머모르타르의 경화수축 및 부착강도)

  • Yeon, Kyu-Seok;Jin, Nan-Ji;Choi, Jong-Yun;Beck, Jong-Man
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.383-386
    • /
    • 2003
  • In this study, the MMA-modified paste mixed waste rubber powder, which has a small elastic modulus and a large modification, was produced by using the soft unsaturated polyester resin(UP) as a binder. Then the adhesive properties according to the matrices in both underwater and air-dry conditions and the hardening shrinkage according to the contents of shrinkage reducing agent(SRA) and of MMA were surveyed. The experimental results show that, regardless of humidity of matrices the adhesive strength of polymer concrete was larger than cement concrete. the adhesive strength of MMA content of 20% was larger than MMA content of 30%. regardless of matrix materials the adhesive strength in water condition were $20{\sim}30%$ comparing with the air-dry condition. The case of MMA content of 20% showed the largest adhesive strength. In the hardening shrinkage experiment, the hardening shrinkage reduced as MMA and SRA contents increased, and the decrease of the hardening shrinkage by SRA was larger.

  • PDF

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.