• Title/Summary/Keyword: Unreinforced masonry (URM)

Search Result 45, Processing Time 0.024 seconds

Seismic Behavior Evaluation of Unreinforced Masonry Structure Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 비보강 조적조 구조물의 지진거동평가)

  • 김희철;김관중;홍원기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.9-16
    • /
    • 2001
  • The purpose of this study is to evaluate a seismic behavior of unreinforced masonry(URM) structure. For more efficient evaluation, quasi-dynamic analysis method is used in this study. The influence of soil-structure interaction on the seismic response of low rise structures is discussed through comparison of the computed seismic response for the structure on rigid or dense soil and that on soft soil. The results of analytical study show that the story shear forces and the base shear forces could increase on soft soil. Furthermore, it was observed that an approximate expressions prescribed in current seismic codes may underestimate the value of the base shear force of low rise buildings on soft soil.

  • PDF

Evaluation of the Seismic Performance for Domestic URM Buildings Using Nonlinear Dynamic Analysis (비선형 동적해석을 통한 국내 비보강 조적조 건축물의 내진성능 평가)

  • Baek, Eun-Rim;Kim, Jung-Hyun;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.83-92
    • /
    • 2016
  • The purpose of this study is to evaluate the seismic performance of domestic unreinforced masonry(URM) buildings using nonlinear dynamic analysis. For that, the nonlinear hysteresis models suggested in the previous research were validated for the dynamic analysis. The results of the shaking table test were compared with the dynamic analysis results using the suggested nonlinear hysteresis models. As a result, the nonlinear hysteresis models were expected to be applicable to the dynamic analysis of URM buildings. Based on the models, the dynamic analysis of domestic URM buildings varying the number of stories and opening ratio was carried out. The analysis results showed that most of the domestic URM buildings were very vulnerable to design earthquake in Korea.

Experimental and numerical analysis of RC structure with two leaf cavity wall subjected to shake table

  • Onat, Onur;Lourenco, Paulo B.;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.1037-1053
    • /
    • 2015
  • This paper presents finite element (FE) based pushover analysis of a reinforced concrete structure with a two-leaf cavity wall (TLCW) to estimate the performance level of this structure. In addition to this, an unreinforced masonry (URM) model was selected for comparison. Simulations and analyses of these structures were performed using the DIANA FE program. The mentioned structures were selected as two storeys and two bays. The dimensions of the structures were scaled 1:1.5 according to the Cauchy Froude similitude law. A shake table experiment was implemented on the reinforced concrete structure with the two-leaf cavity wall (TLCW) at the National Civil Engineering Laboratory (LNEC) in Lisbon, Portugal. The model that simulates URM was not experimentally studied. This structure was modelled in the same manner as the TLCW. The purpose of this virtual model is to compare the respective performances. Two nonlinear analyses were performed and compared with the experimental test results. These analyses were carried out in two phases. The research addresses first the analysis of a structure with only reinforced concrete elements, and secondly the analysis of the same structure with reinforced concrete elements and infill walls. Both researches consider static loading and pushover analysis. The experimental pushover curve was plotted by the envelope of the experimental curve obtained on the basis of the shake table records. Crack patterns, failure modes and performance curves were plotted for both models. Finally, results were evaluated on the basis of the current regulation ASCE/SEI 41-06.

In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems (강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 내진 거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • This experimental study was conducted to evaluate the in-plane and out-of-plane seismic performances of an unreinforced masonry walls (URMs) strengthened with prestressed steel-bar truss systems developed in the present investigation. The truss systems were installed on both faces of the walls. All the wall specimens were subjected to lateral in-plane or out-of-plane cyclic loads at the fixed gravity stress of 0.25 MPa. The seismic performance of the strengthened specimens was compared to that measured in the counterpart URM. When compared with the lateral load-displacement curve of the URM, the strengthened walls exhibited the following improvements: 190% for initial stiffness, 180% for peak strength, 610% for accumulated energy dissipation capacity, and 510% for equivalent damping ratio under the in-plane state; the corresponding improvements under the out-of-plane state were 230% for initial stiffness, 190% for peak strength, 240% for accumulated energy dissipation capacity, and 120% for equivalent damping ratio, respectively. These results indicate that the developed technique is very promising in enhancing the overall seismic performance of URM.

Fragility reduction using passive response modification in a Consequence-Based Engineering (CBE) framework

  • Duenas-Osorio, Leonardo;Park, Joonam;Towashiraporn, Peeranan;Goodno, Barry J.;Frost, David;Craig, James I.;Bostrom, Ann
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.527-537
    • /
    • 2004
  • Consequence-Based Engineering (CBE) is a new paradigm proposed by the Mid-America Earthquake Center (MAE) to guide evaluation and rehabilitation of building structures and networks in areas of low probability - high consequence earthquakes such as the central region of the U.S. The principal objective of CBE is to minimize consequences by prescribing appropriate intervention procedures for a broad range of structures and systems, in consultation with key decision makers. One possible intervention option for rehabilitating unreinforced masonry (URM) buildings, widely used for essential facilities in Mid-America, is passive energy dissipation (PED). After the CBE process is described, its application in the rehabilitation of vulnerable URM building construction in Mid-America is illustrated through the use of PED devices attached to flexible timber floor diaphragms. It is shown that PED's can be applied to URM buildings in situations where floor diaphragm flexibility can be controlled to reduce both out-of-plane and in-plane wall responses and damage. Reductions as high as 48% in roof displacement and acceleration can be achieved as demonstrated in studies reported below.