• Title/Summary/Keyword: Unreinforced

Search Result 289, Processing Time 0.107 seconds

Dynamic and Quasi-Static Fracture Toughness of $Al_2O_3$ and $Al_2O_3$ Ceramic Matrix Composite Reinforced with Sic Whiskers ($Al_2O_3$$Al_2O_3$ -$SiC_w$ 복합재료의 동적 및 정적 파괴인성에 관한 연구)

  • 조경목;이성학;표성규;장영원
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.457-464
    • /
    • 1990
  • This paper presents the influence of the loading rate on the room temperature fracture toughness of a brittle Al2O3 and a SiC whisker reinforced Al2O3 composite. Dynamic fracture toughness tests were conduced using compressive fatigue pre-cracked notched round bars loaded in tension to produce a stress intensity rate K1=106 MPa√m/sec. The experimental results show that for each loading rate the fracture toughness values obtained for the ceramic matrix composite are higher than the corresponding values for the single phase alumina. In addition, both the reinforced and unreinforced ceramic are singnificantly tougher under dynamic loading than static loading. This dynamic and quasi-static fracture initiation behaviro can be interpreted by identifying quantitatively the mode of fractuer initiation as a function of loading rate.

  • PDF

A simplified evaluation method of skeleton curve for RC frame with URM infill

  • Jin, Kiwoong;Choi, Ho
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, a simplified evaluation method of the skeleton curve for reinforced concrete (RC) frame with unreinforced masonry (URM) infill is proposed in a practical form, based on the previous studies. The backbone curve for RC boundary frame was modeled by a tri-linear envelope with cracking and yielding points. On the other hand, that of URM infill was modeled by representative characteristic points of cracking, maximum, and residual strength; also, the interaction effect between RC boundary frame and the infill was taken into account. The overall force-displacement envelopes by the sum of RC boundary frame and URM infill, where the backbone curves of the infill from other studies were also considered, were then compared with the previous experimental results. The simplified estimation results from this study were found to almost approximate the overall experimental results with conservative evaluations, and they showed much better agreement than the cases employing the infill envelopes from other studies.

Magnetic Resonance-Based Wireless Power Transmission through Concrete Structures

  • Kim, Ji-Min;Han, Minseok;Sohn, Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.104-110
    • /
    • 2015
  • As civil infrastructures continue to deteriorate, the demand for structural health monitoring (SHM) has increased. Despite its outstanding capability for damage identification, many conventional SHM techniques are restricted to huge structures because of their wired system for data and power transmission. Although wireless data transmission using radio-frequency techniques has emerged vis-$\grave{a}$-vis wireless sensors in SHM, the power supply issue is still unsolved. Normal batteries cannot support civil infrastructure for no longer than a few decades. In this study, we develop a magnetic resonance-based wireless power transmission system, and its performance is validated in three different mediums: air, unreinforced concrete, and reinforced concrete. The effect of concrete and steel rebars is analyzed.

Unconfined Compressive Strength of Reinforced Soil Brick (보강흙벽돌의 일축압축 강도특성분석)

  • 장병욱;강상욱;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.594-598
    • /
    • 1999
  • To analyze the characteristics of unconfined compressive strength of reinforced soil bricks made of clayey and sandy mixed with cement, lime, staple fiber and their combinatioin , a series of unified comparessive tests was performed. The resutls are summarized as follows ; 1) Reinforcing effect of reinforced clayed soil and that of soil brick of sandy soil mixed with cement and staple fiber is 8 times greater than no reinforced sandy sol. Therefore, the reinforcing effect seems to be greater in sandy soil than in clayey soil . 2) Lime shows a negative reinforcing effect in clayed soil but a little reinforcing effect in sandy soil. 3) It is appeared that strain at failure of soil brick reinforced with staple fiber is greater than that of unreinforced brick regrardless of soil's type.

  • PDF

A Study on Existing Evaluation Method and TES Method about Toughness of Fiber Reinforced Concrete (섬유보강콘크리트의 인성에 대한 기존평가방법과 TES 기법에 관한 연구)

  • 배주성;임정환;김경수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.797-802
    • /
    • 1998
  • Fiber reinforcement can significantly improve the properties of concrete. Particulary, toughness or energy-absorbing ability of fiber reinforced concrete is frequently higher than that of unreinforced concrete. Toughness is a measure of energy absorption capacity and used to characterized fiber reinforced concrete's ability to resist fracture when subjected to static, dynamic and impact loads. However, the current standard methods of characterizing the toughness of fiber reinforced concrete have proven to be some inadequate and problems and have caused a great deal of dissent and confusion. This study research some of the inadequate and problems with these toughness measurement methods and proposes the evaluation method for Fiber Reinforced Concrete toughness.

  • PDF

Bearing Capacity of a Square Shallow Foundation with and without Geogrid Reinforcement (Geogrid보강 여부에 따른 정방형 얕은 기초의 지지력에 관한 연구)

  • 신방웅;김수삼
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.5-16
    • /
    • 1994
  • This paper presents a new method to improve the bearing capacity of a square shallow foundation placed on a sand layer reinforced with geogrids which shows promise for further field work. The geogrid reinforcement will be necessary in the case of machine foundation, embankments for railroads, and foundations of structures in earthquake-prone areas. The ultimate bearing capacity (UBC) for the unreinforced sand and reinforced sand has been compared. Also, the effect of length, spacing, width of reinforcement on increasing the UBC have been evaluated. Based on the present model test results, it appears that significant improvement in the UBC of medium sand can be achieved by geogrid reinforcement.

  • PDF

Seismic Performance Evaluation of Buildings with WUF-B Connections Considering Connection Fractures (WUF-B 접합부의 파단을 고려한 건물의 내진성능 평가)

  • 권건업;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.473-478
    • /
    • 2003
  • The purpose of this study is to model the seismic behavior of Welded Unreinforced Flange and Bolted (WUF-B) connections with post-Northridge details and evaluate the system performance of the builidings with WUF-B connections. For this purpose, based on test results, mathematical model of the connections were developed and compared with test results. This connection model take into account both panel zone deformation and connection fractures. Then, SAC Phase II 3 and 9-story buildings were modeled using the connection model developed in this study. From nonlinear static pushover analysis of the buildings, maximum strength, maximum roof drift, and so forth are investigated for the buildings with post-Northridge details. Analysis results were compared with those of buildings with pre-Northridge details and ductile connections with no fractures.

  • PDF

Sand-Nonwoven geotextile interfaces shear strength by direct shear and simple shear tests

  • Vieira, Castorina Silva;Lopes, Maria de Lurdes;Caldeira, Laura
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.601-618
    • /
    • 2015
  • Soil-reinforcement interaction mechanism is an important issue in the design of geosynthetic reinforced soil structures. This mechanism depends on the soil properties, reinforcement characteristics and interaction between these two elements (soil and reinforcement). In this work the shear strength of sand/geotextile interfaces were characterized through direct and simple shear tests. The direct shear tests were performed on a conventional direct shear device and on a large scale direct shear apparatus. Unreinforced sand and one layer reinforced sand specimens were characterized trough simple shear tests. The interfaces shear strength achieved with the large scale direct shear device were slightly larger than those obtained with the conventional direct shear apparatus. Notwithstanding the differences between the shear strength characterization through simple shear and direct shear tests, it was concluded that the shear strength of one layer reinforced sand is similar to the sand/geotextile interface direct shear strength.

Reinforcing effect of vetiver (Vetiveria zizanioides) root in geotechnical structures - experiments and analyses

  • Islam, Mohammad S.;Shahin, Hossain M.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.313-329
    • /
    • 2013
  • Vetiver grass (Vetiveria zizanioides) is being effectively used in many countries to protect embankment and slopes for their characteristics of having long and strong roots. In this paper, in-situ shear tests of the ground with the vetiver roots have been conducted to investigate the stabilization properties corresponding to the embankment slopes. Numerical analyses have also been performed with the finite element method using elastoplastic subloading $t_{ij}$ model, which can simulate typical soil behavior. It is revealed from field tests that the shear strength of vetiver rooted soil matrix is higher than that of the unreinforced soil. The reinforced soil with vetiver root also shows ductile behavior. The numerical analyses capture well the results of the in-situ shear tests. Effectiveness of vetiver root in geotechnical structures-strip foundation and embankment slope has been evaluated by finite element analyses. It is found that the reinforcement with vetiver root enhances the bearing capacities of the grounds and stabilizes the embankment slopes.

Performance of polymer concrete incorporating waste marble and alfa fibers

  • Mansour, Rokbi;El Abidine, Rahmouni Z.;Brahim, Baali
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.331-343
    • /
    • 2017
  • In this study a polymer concrete, made up of natural aggregates and an orthophthalic polyester binder, reinforced with natural Alfa fibers has been studied. The results of flexural testing of unreinforced polymer concrete with different rates of charges (marble) showed that the concrete with 20% of marble is stronger and more rigid compared to other grades. Hence, a rate of 20% of marble powder is selected as the optimal value in the development of polymer concrete reinforced Alfa fibers. The fracture results of reinforced polymer concrete with 1 and 2 wt% of chopped untreated or treated Alfa fibers showed that treated Alfa (5% NaOH) fiber reinforced polymer concrete has higher fracture properties than other composites. We believe that this type of concrete provides a very promising alternative for the building industry seeking to achieve the objectives of sustainable development.