• Title/Summary/Keyword: Unplanned Reactor Trips

Search Result 2, Processing Time 0.013 seconds

TASK TYPES AND ERROR TYPES INVOLVED IN THE HUMAN-RELATED UNPLANNED REACTOR TRIP EVENTS

  • Kim, Jaew-Han;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.615-624
    • /
    • 2008
  • In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1 %), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

Transient Diagnosis and Prognosis for Secondary System in Nuclear Power Plants

  • Park, Sangjun;Park, Jinkyun;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1184-1191
    • /
    • 2016
  • This paper introduces the development of a transient monitoring system to detect the early stage of a transient, to identify the type of the transient scenario, and to inform an operator with the remaining time to turbine trip when there is no operator's relevant control. This study focused on the transients originating from a secondary system in nuclear power plants (NPPs), because the secondary system was recognized to be a more dominant factor to make unplanned turbine-generator trips which can ultimately result in reactor trips. In order to make the proposed methodology practical forward, all the transient scenarios registered in a simulator of a 1,000 MWe pressurized water reactor were archived in the transient pattern database. The transient patterns show plant behavior until turbine-generator trip when there is no operator's intervention. Meanwhile, the operating data periodically captured from a plant computer is compared with an individual transient pattern in the database and a highly matched section among the transient patterns enables isolation of the type of transient and prediction of the expected remaining time to trip. The transient pattern database consists of hundreds of variables, so it is difficult to speedily compare patterns and to draw a conclusion in a timely manner. The transient pattern database and the operating data are, therefore, converted into a smaller dimension using the principal component analysis (PCA). This paper describes the process of constructing the transient pattern database, dealing with principal components, and optimizing similarity measures.