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a b s t r a c t

This paper introduces the development of a transient monitoring system to detect the early

stage of a transient, to identify the type of the transient scenario, and to inform an operator

with the remaining time to turbine trip when there is no operator's relevant control. This

study focused on the transients originating from a secondary system in nuclear power plants

(NPPs), because the secondary system was recognized to be a more dominant factor to

make unplanned turbine-generator trips which can ultimately result in reactor trips. In order

tomake the proposedmethodology practical forward, all the transient scenarios registered in

a simulator of a 1,000 MWe pressurized water reactor were archived in the transient pattern

database. The transient patterns show plant behavior until turbine-generator trip when

there is no operator's intervention. Meanwhile, the operating data periodically captured from

a plant computer is compared with an individual transient pattern in the database and a

highly matched section among the transient patterns enables isolation of the type of

transient and prediction of the expected remaining time to trip. The transient pattern

database consists of hundreds of variables, so it is difficult to speedily compare patterns and

to draw a conclusion in a timely manner. The transient pattern database and the operating

data are, therefore, converted into a smaller dimension using the principal component

analysis (PCA). This paper describes the process of constructing the transient pattern data-

base, dealing with principal components, and optimizing similarity measures.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Nuclear power plants (NPPs) are increasing the capacity and

progressing with much more reliable systems for safety.

However, an operator's role should never be underestimated,

since the most significant cause of unexpected shutdowns is

still human error. Many human errors are induced by an op-

erator's inability to diagnose the transient pattern at its
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initiation [1,2]. Human errors can be reduced by training with

qualified procedures, but these may be graded depending on

variation in individuals. Information technology can

compensate this differentiation, and it is expected ultimately

to improve safety and availability of NPPs [3]. Through in-

terviews, most of the operators could not recognize well what

type of transient occurred after a transient state, but they

recognized an abnormal state. Therefore, this study started

from the following hypothesis: it is possible that operators

take proper action to cope with transients at an initial state by

recognizing what the transient scenario is and how much

time remains until reactor or turbine trip. Consequentially,

this is effective for increasing the time to cope with the

transient state because operators can reduce the time to

diagnosis. The proposed idea is to collect the transient pattern

database from a plant simulator and to compare a plant state

with the transient pattern database using a pattern matching

algorithm [4,5]. The transients in this study were focused on

those from the secondary system in NPPs. According to sta-

tistics, many unexpected shutdowns result from the second-

ary system rather than the primary system due to the

complexity in terms of operation andmaintenance [6]. That is,

inspection and maintenance activities are more prone to

result in human errors [7,8]. Investigations on trip causes from

the secondary system have not progressed because safety of

the secondary system is relatively less valued than that of the

primary system. This paper will explain the three steps: (1)

construction of the transient pattern database; (2) signal pre-

processing including the dimension compression; and (3)

pattern matching methodology and its verification.

2. Materials and methods

In this study, a pattern searchingmethodology is developed to

decidewhether a current plant is progressing to a turbine and/

or generator trip and it is based on the database acquired at

transient states from a simulator. We hypothesized that an

early detection and diagnosis for transients would be possible

by extracting the characteristic features from the prior pat-

terns. Also, it is expected that the operators are able to get

sufficient time for taking actions through the information

regarding the remaining time to trip. As a result, the purpose

of this study is that those operators properly cope with tran-

sients occurring at a secondary system in an NPP by providing

the type of transient and remaining time to reactor or turbine

trip through the pattern matching technique.

2.1. Overall framework

As Fig. 1 shows a whole framework of this study, the purpose

of the transient monitoring system is to indicate the remain-

ing time to a turbine trip, and the possibility of the turbine trip

is evaluated by comparing with a set of on-line signals and the

transient pattern database in a certain time window. The

transient database representing the latent abnormal sce-

narios which occur due to a malfunction in the secondary

system is composed by acquiring signals from the simulation

of the NPPs. The acquired data go through several steps. One

of the most important preprocessing steps is the dimension

compression. The reason for the dimension compression is to

minimize the time while performing the pattern matching

algorithm [9e12]. Consequently, several hundred variables are

reduced in sizewithout losingmuch information therein. This

study performs principal component analysis (PCA) for the

dimension compression [13]. Operating data is acquired

through a real-time database or data collection system (DCS).

The dimension of the operating data is suppressed by the PCA

as well. After then, the pattern matching system will start to

search the most similar pattern among the stored patterns in

the transient databasewith the operating data. One important

factor in this process is to utilize the reasonable similarity

measurements. In this study, the feasibility of various simi-

larity measures for the pattern matching was verified and a

cosinemeasure was finally selected. When a certain pattern is

detected and interpreted as the departure of a transient

Fig. 1 e Framework of transient monitoring system. PCA, principal component analysis.
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phenomenon, this is characterized by diagnosis. After this, it

is possible to inform the operator of the type of transient

scenario and the remaining time to turbine trip, which be-

longs to prognostics. The prognosis usually means the

remaining useful lifetime. Therefore, from the point of view of

an operator, the remaining time to trip is regarded as the

prognosis because our methodology aims to provide the

remaining time to trip.

2.2. Transient pattern database

This study aimed at accumulating the transient database for

the secondary system in operating NPPs. The transient sce-

narios could be taken from the operator training simulation

for a 1,000 MWe pressurized water reactor, which is the most

common in South Korea, and all scenarios were collected

under a certainmalfunctionwithout intervention of operators

after initiation. Transient scenarios were selected by

analyzing the whole list of about 200 cases loaded on the

simulator, and then dividing them into the primary system

and secondary system. Finally, we selected a total of 54 sce-

narios that would preferentially have an effect on turbine or

generator trips. Next, we triggered a scenario by intentionally

inputting the malfunction at the operator's panel. The tran-

sient patterns were acquired by applying various initial con-

ditions to consider the fact that a plant behavior is subjected

to the initial conditions even for an identical malfunction.

Table 1 shows a part of the lists of the transient pattern

database. The severity level means the magnitude of accident

and it affects a variable of electric output. Thus, we should

consider the severity level to observe the electric output and

physical behavior. For example, if incident or accident at

severity 5% occurred, the output of electric changed little and

stabilized, because this is the level that largely cannot affect

the incidentoraccident.However, if it occurredat severity 50%,

the electric output largely changed and a reactor or turbine trip

happened, because this is the level at which the incident or

accident occurred. In other words, the severity level is the

factor that can give a change of physical behavior and electric

output. From Table 1, we can recognize that the results are

different depending on the initial conditions within a single

initiating event. For example, electric output was changed a

little when a steam generator downcomer pipe rupture

happened at severity level 5%. However, it reaches the trip in a

decreasing trend when the initial condition was severity level

50~100%. The time required until trip was also different, but

scenarios generally finished within 600 seconds. To take the

pattern features by the point of trip, signals were collected

under different initial conditions, so each transient scenario

was repetitively simulated for two to three cases by increasing

the severity.All of theprocessvariables indicating thebehavior

of the secondary systemand reactor/turbine tripwere selected

as the fields for the transient pattern database and there were

~550. This was the maximum number of parameters that au-

thors could log in from the simulator. However, the dimension

of the transient pattern databasewas too big formonitoring in

a timely manner, so we considered a smaller database which

resulted in an equivalent solution within a few seconds. In

order to achieve this strategy, the acquired data from both

signal sources go through signal preprocessing steps. One of

the most significant preprocessing steps is performed by the

PCA. The purpose of the PCA is to minimize the time while

performing the pattern matching algorithm by compressing

the dimension of signals. At the same time, the PCA can

removeanoise component in the signals so it is easy to identify

the dominant direction of signals' variance. The comparison of

two patterns is conducted in a specific internal size of time,

referred to as a sampling window. For example, if the size of a

sampling window is m seconds, an operating data is accumu-

lated duringm secondsand this datawill be comparedwith the

transient patterns which are bounded by the same size with

the sampling window. Finally, the determination of an ex-

pected transient pattern is based on the calculation results

using similarity measures.

Fig. 2 explains how to generate alarms when a transient

is detected and how to provide the remaining time to trip.

All of the patterns have the signal for representing a

generator output. If we are successful in finding out an ex-

pected transient pattern at m as shown in Fig. 2, the

remaining time to a trip is supposed to be the interval

Table 1 e Several cases in transient pattern database.

Initiating event Initial condition Results

Steam generator downcomer pipe rupture (1) Severity ¼ 5% (1) Power decreased & stabilized

(2) Severity ¼ 50% (2) Reactor stop (after 1.5 min)

(3) Severity ¼ 100% (3) Reactor stop (after 1.0 min)

Main steam pipe safety valve malfunction opening stage (1) Severity ¼ 1% (1) Little or no change

(2) Severity ¼ 5% (2) Recognition of opening safety valve

Atmospheric dump valve failure open (1) Severity ¼ 5% (1) No change in power

(2) Severity ¼ 10% (2) Little change in power

(3) Severity ¼ 50% (3) Reactor stop (after 40 s)

Condenser vacuum failure (1) Severity ¼ 10% (1) Reactor stop (after 2 min)

(2) Severity ¼ 100% (2) Reactor stop (after 40 s)

Feedwater common header rupture (1) Severity ¼ 5% (1) No change in power

(2) Severity ¼ 20% (2) Little change in power

(3) Severity ¼ 40% (3) Reactor stop (after 6 min)

Steam generator blowdown pipe rupture (1) Severity ¼ 10% (1) Little change in power

(2) Severity ¼ 30% (2) Power decreased

(3) Severity ¼ 50% (3) Reactor stop (after 2 min)
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between Tm and the end of scenario Tn, which is zero

generator output. This process is repeated every second. If

there is no any matched pattern, then it is regarded as a

normal condition; if there is, it means that the turbine trip

annunciator should be able to provide both the type of

transient pattern and its initial conditions as long as the

pattern's uniqueness can be guaranteed.

2.3. Dimension compression

The transient pattern database contains 54 scenarios and

each scenario has two to three cases depending on initial

conditions. Considering the number of variables for the sce-

nario, it is a massive quantity. We expected that the transient

monitoring would only be meaningful when the whole pro-

cess should be over within a few seconds. This study proposes

a size reduction of massive data through the dimension

compression. Furthermore, the dimension compression can

have another benefit of decreasing the noise in the signals.

The PCA used in this study is a dimension compression

method reducing the number of variables where the data of

variables interconnecting each other is linearly converted to

their independent principal components. The PCA is applied

to the transient pattern database as well as operating data in a

time through the following steps. The transient pattern

database matrix X is expressed in the following manner:

X ¼
0
@ x11 / x1p

« xij «
xn1 / xnp

1
A (1)

whereX is thematrix for an individual case, n is the number of

observations, and p is the number of variables.

The matrix X indicates all of the raw data collected from

the simulator for each case. Because the collected variables

can include the digital type or constant variables, these kinds

of variables should be removed due to their abnormal

contribution on pattern matching. Another point to be

checked is that the transient pattern database has difference

units and normal range, so the similarity calculation can be

corrupted. To prevent these troubles, the PCA is implemented

after normalizing the variables:

xmax
j ¼ max

j

�
x1j; x2j;/; xnj

�
(2)

where xmax
j is the maximum value of jth variable.

The normalized matrix Z is made by dividing all of the

values in a single vector by xmax
j :

Z ¼
0
@ z11 / z1p

« zij «
zn1 / znp

1
A (3)

where Z is the normalization matrix and zij ¼ xij=xmax
j .

Before conducting the PCA, we sliced the matrix Z such

that the length of sliced matrix is equal to the sampling win-

dow explained in Fig. 1. If the size of a sampling window is m,

then the sliced subset of the matrix Z is represented by Eq. (4).

For preliminary tests, the sampling window size was decided

as 10 seconds:

Zl ¼
0
@ zl�m;1 / zl�m;p

« 1 «
zl1 / zlp

1
A (4)

where l can vary from mþ1 to n. Subscript l means the latest

value.

The score matrix Sz is obtained by multiplying the covari-

ance matrix and the original matrix:

Sz ¼ Z$Sz (5)

where Sz is the score matrix.

The principal components consisting of the score matrix

can explain the degree of capability to capture the variance of

the data. In other words, the principal component corre-

sponding to a larger eigenvalue can have more information

than other principal components. In order to take this benefit,

we will use the principal components as a weighting factor in

calculating similarity.When a scorematrix has the eigenvalue

li, theweighting factor for jthprincipal component is as follows:

Qj ¼
ljXp

i¼1

li

(6)

where Qj is the weighting factor and p is the total number of

principal components.

Fig. 2 e Method to generate alarms and provide remaining time to trip.
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The eigenvalue l is obtained by unit matrix I:

ðSz � lIÞ ¼ 0 (7)

where l is an eigenvalue and I is a unit matrix.

The required number of principal componentswas decided

such that over 99.9% of variance of the entire data can be

captured. In this study, the number of principal components

was decided as 10. This is approximately under 4% of the

original number of variables, which means it is possible to

improve the matching speed by over 25 times. The transient

pattern database is re-stored by considering the weighting

factors. Other transient data corresponding out of the 10

largest principal components are trimmed in the database. So

the final score matrix is given by:

Sz0 ¼
0
@ z011 / z01p0

« 1 «
z0n1 / z0np0

1
A (8)

The operating data has to be processed by the PCA and

compared with the transient pattern database. Since all the

processes are the same, the final result, St0 can be expressed as

follows:

St0 ¼
0
@ t011 / t01p0

« 1 «
t0m1 / t0mp0

1
A (9)

2.4. Similarity measures

To compare operating data with the transient pattern data-

base, similarity measures are necessary. In the study,

Euclidean distance, cosine distance, and Manhattan distance

were relatively tested as similarity measures. The similarity is

the concept of distance between two points in the N dimen-

sion. When to perform similarity calculation, St0 is usually

much shorter than Sz0 in terms of the number of data (n>m).

Therefore, St0 is trimmed from a certain start point to the next

mth point for each similarity calculation. The start point is

taken as the first position of the transient pattern database

and then moved to the next one for each time. This iteration

continues when the start point reaches the n�mþ 1th posi-

tion. The Manhattan distance is defined as:

dðz0; t0Þ ¼
Xp0
j¼1

"
Qj �

Xm
i¼1

���z0ij � t0ij

���
#

(10)

Euclidean distance formula is defined as:

dðz0; t0Þ ¼
Xp0
j¼1

"
Qj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

�
z0ij � t0ij

�2
s #

(11)

A cosine measure is calculated by using the inner product

of two vectors. The cosine measure formula is defined as:

dðz0; t0Þ ¼
Xp0
j¼1

"
Qj � cos�1

z0j$t
0
j���z0j���$���t0j���

#
(12)

In the case of Euclidean and Manhattan distance, a calcu-

lated result should be closer to zero when two patterns are

similar. In the case of cosine measure, the result approaches

one when two patterns are matched.

3. Results

The purpose of this section is to check the preliminary validity

of the proposed algorithm for developing a full scope turbine

trip annunciator. To achieve this purpose, we have to use

actual transient data, but the number of such cases is rare and

limited to be released, so it was not proper to validate the

performance of the proposed algorithm. As a contingency

plan, we decided to use hypothetically generated operating

data to see the feasibility of the proposed idea. We assumed

that the operating database and database acquired from the

simulator is almost similar because all of the operators

working inNPPs periodically get training in simulators and the

training knowledge is using real work. Although operating

data and simulator data are a bit different, we expect the

difference to be within noise level. We analyzed the effect of

various type of noise added in the simulation data. Randomly

taking signals by using a sampling window from the

normalized transient pattern database, the matrix Z, we

intentionally corrupted it by adding various noises and

regarded this as operating data.

Fig. 3 explains the creation process of hypothetical oper-

ating data and Fig. 4 shows the patterns of noises. The pat-

terns of noises correspond to the variation for different initial

conditions, different severity, and general random noise.

Noises we considered were: (1) Pattern 1: a uniformly distrib-

uted noise with maximum ± 1% which is for assuming a

general random noise; (2) Pattern 2: a parallel shift with

maximum ± 5% which means a bias due to different starting

points of operation; and (3) Pattern 3: a gradual increase or

decrease which explains the effect caused by different

severity. In this test, the same type of noise was applied to all

of the parameters. Next, we performed the trend analysis to

observe how to change the trend of database applied to the

PCA.

Fig. 5 shows the trend which analyzed a case of ‘Steam

generator downcomer pipe rupture’ of severity at 1% and 10%.

The vertical axis indicates the magnitude of principle com-

ponents and the horizontal axis indicates time. In a trend of

severity at 1%, Pattern 1, applied uniformly distributed noise,

shows a similar trend and a fine vibration was found, but it

was not shifted. Pattern 2, applied parallel shift, shows a

similar trend and a very small shift, and Pattern 3, applied a

rate increase or decrease, shows a similar trend, but a small

shift. In a trend of severity at 10%, Pattern 1 shows a similar

trend of principle components and a little vibration, but no

shift. Pattern 2 shows a similar trend and shifted. Pattern 3

shows a similar trend but a clear shift. Therefore, we can

conclude that the pattern applied uniformly distribution noise

of severity at 1% and 10% indicates a similar trend of principle

components. But other patterns show the outstanding aspect

that an initial condition in the same scenarios indicates a

similar trend of principle components, but different severity

in the same scenarios shows a clear shift and an inclined

trend of principle components. Furthermore, each of the

different scenarios has different principle components. This

analysis indicates that the severity with a magnitude that can

trigger a trip has intrinsic physical characteristics and pattern.

In other words, if we have multiple transient data which have
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different characteristics, it is possible to distinguish them by

observing the behavior of principle components.

As a next step, we performed similarity measures in the

manner of one of the pattern matching techniques to find the

matching point between the transient database and the hy-

pothetical database as considering real operating data. In this

study, we compared and finally decided the performance of

individual measures such as Manhattan distance measure,

Euclidean distance measure, and Cosine distance measure. In

order to show the feasibility of preprocessing, the results from

pure time domain analysis, those from PCA without a

weighting factor in Eq. (6), and those from PCA with a

weighting factor are shown in parallel and compared. Tables

2e4 indicate the entire results.

The verification results are summarized in Tables 2e4.

Table 2 shows the similarity comparison performed in a time

domain, Table 3 shows the results for dimension compres-

sion, and Table 4 shows when a dimension compression is

performed with weighting factors. A total of 26 operating data

were randomly extracted from the transient patter database

and used as a raw data.We assigned ‘OO’when the successful

matching probability is > 90%, ‘O’ for > 70%, ‘D’ for > 50%, and

‘X’ for < 50%. For evaluating the speed of pattern matching or

Fig. 4 e Pattern examples for validation.

Fig. 5 e Trend comparison of principal components at 1%

severity and the trend comparison of three cases at 10%.

Table 2 e Similarity measures in time domain.

Raw data Pattern 1 Pattern 2 Pattern 3 Speed

Manhattan OO OO OO X 1.0

Euclidean OO OO OO X 1.0

Cosine OO X X OO 0.4

Fig. 3 e Creation of a hypothetical operating data. PCA, principal component analysis.
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computing time, the time required for finishing the calcula-

tion of Manhattan distance without dimension compression

was considered as a reference, unity. In Table 2, the result of

similarity measures in a time domain represents the perfor-

mance without dimension compression. The matching prob-

abilities of Manhattan distance and Euclidean distance for

similarity measures are in good agreement for most of the

cases except for Pattern 3, where the raw data was multiplied

with uniform rate in a time domain. By contrast, the results of

cosine similarity measure are different from the reference

while it was observed to have a higher matching speed. For

observing the degree of improvement in the aspects of accu-

racy and computing time, we implemented identical verifi-

cation tests by utilizing the PCA. Table 3 shows the

performance of the similarity measures without weighting

factors being applied in a principle component domain. This

result shows that the cosine measure has a high matching

probability. It is true that the data processing was faster due to

reduction of the quantity of data. The similarity measures in a

time domain are likely to mislead a result because there is no

method to remove the noise portions by themselves. The

pattern matching in a principal component domain is able to

more or less reduce the noise portions. The results in Table 3

are satisfactory in terms of computing time, but need to be

improved in terms of accuracy. Since the coverage of each

principal component is different, we had to verify its feasi-

bility in the pattern matching process. Table 4 shows the re-

sults of similarity measures with the weighting factors

applied to variables in a principle component domain. The

matching probability has generally increased. However, no

difference is found in matching time. The performance of the

cosine measure is worth noticing. While the computing time

of the cosine measure had no benefit, it was found that its

matching probability was > 90%. However, Manhattan dis-

tance and Euclidean distancewere not good at Pattern 3. From

these results, the cosine measure was decided as the best

measure of matching in the aspects of computing time and

accuracy. It should be noted that all similarity measures are

evaluated for a limited number of noise patterns, so, for

increasing the reliability, more calculations need to be per-

formed for various cases, particularly by utilizing real-time

data from NPPs.

4. Conclusion

This paper was focused on analyzing the physical behavior of

NPPs under transient states through the pattern matching.

The pattern matching is a technique to increase the detection

probability by applying various similarity measures to the

data acquired from a simulator of NPPs after signal pre-

processing, such as normalization, dimension compression,

and weighting factors. Various similarity measures were

investigated and the cosine measure was determined as the

best in the aspects of accuracy and computation time.

Therefore, it is possible to prognose and diagnose a transient

state which occurred from a secondary system in an NPP and

prevent a turbine trip by using a pattern matching technique.

Also, in this study we focused on the calculation of the

remaining time to reactor trip and finding out the type of

transient. However, this methodology can be applied to detect

the system failure in NPPs, if it is possible to make grouping

databases relatedwith incidents or accidents of system failure

and each time of system failure can be decreased and

increased depending on the initial conditions. We expect that

this study contributes to help as a countermeasure that can

reduce the magnitude of an accident by providing the coming

accident information when operators encounter the unex-

pected situation.
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