• Title/Summary/Keyword: Unmodelled Dynamics

Search Result 39, Processing Time 0.021 seconds

Fuzzy control system tuning by performance evaluation (성능평가에 의한 퍼지제어시스템 동조)

  • Jeong, Heon;Jeong, Chang-Gyu;Ko, Nack-Yong;Kim, Young-Dong;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.682-684
    • /
    • 1995
  • The most effective way to improve the performance of a fuzzy controller may be to optimize look-up values. Look-up values are derived from processes used input-output scale factors, membership functions, rule base, fuzzy inference method and defuzzification. It is powerful way to modify or organize look-up table values. In this paper, We propose the look-up values self-organizing fuzzy controller(LSOFC). We use the plus-minus tuning method(PMTM), scanning values through the processes of addition and subtraction. We show the efficiency of this LSOFC by the results of simulation for nonlinear time-varying plant with unmodelled dynamics.

  • PDF

Induction Motor Position Control Using Integral-Compensating Variable Structure Control Algorithm (적분보상형 가변구조제어기법을 이용한 유도 전동기 위치제어)

  • 강문호;정경민;박윤창
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.205-209
    • /
    • 1999
  • This paper proposes a variable structure position controller for an induction motor(IM) which uses a reaching law and an integral compensating nonlinear switching function. With the reaching law, reaching mode can be established quantitatively during transient state so that dynamic control performance is improved. With the integral compensating nonlinear switching function, both very low overshoot and high steady state control accuracy can be obtained by compensating the states chattering problem due to the unmodelled dynamics of inverter and feedback sensors. For experiment a digital servo driver which consists of a DSP and an IPM inverter was developed. With the various experimental results, IM position control performance was verified.

  • PDF

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

A Robust Fault Detection method for Uncertain Systems with Modelling Errors (모델링 오차를 갖는 불확정 시스템에서의 견실한 이상 검출기)

  • 권오주;이명의
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.729-739
    • /
    • 1990
  • This paper deals with the fault detection problem in uncertain linear/non-linear systems having both undermodelling and noise. A robust fault detection method is presented which accounts for the effects of noise, model mismatch and nonlinearities. The basic idea is to embed the unmodelled dynamics in a stochastic process and to use the nominal model with a predetermined fixed denominator. This allows the input /output relationship to be represented as a linear function of the system parameters and also facilitate the quatification of the effect of noise, model mismatch and linearization errors on parameter estimation by the Bayesian method. Comparisons are made via simulations with traditional fault detection methods which do not account for model mismatch or linearization errors. The new method suggested in this paper is shown to have a marked improvement over traditional methods on a number of simulations, which is a consequence of the fact that the new method explicitly for the effects of undermodelling and linearization errors.

Fuzzy Nonlinear Adaptive Control of Overhead Cranes for Anti-Sway Trajectory Tracking and High-Speed Hoisting Motion (고속 권상운동과 흔들림억제 궤적추종을 위한 천정주행 크레인의 퍼지 비선형 적응제어)

  • Park, Mun-Soo;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.582-590
    • /
    • 2007
  • Nonlinear adaptive control of overhead cranes is investigated for anti-sway trajectory tracking with high-speed hoisting motion. The sway dynamics of two dimensional underactuated overhead cranes is heavily coupled with the trolley acceleration, hoisting rope length, and the hoisting velocity which is an obstacle in the design of decoupling control based anti-sway trajectory tracking control law To cope with this obstacle. we propose a fuzzy nonlinear adaptive anti-sway trajectory tracking control law guaranteeing the uniform ultimate boundedness of the sway dynamics even in the presence of uncertainties in such a way that it cancels the effect of the trolley acceleration and hoisting velocity on the sway dynamics. In particular. system uncertainties, including system parameter uncertainty unmodelled dynamics, and external disturbances, are compensated in an adaptive manner by utilizing fuzzy uncertainty observers. Accordingly, the ultimate bound of the tracking errors and the sway angle decrease to zero when the fuzzy approximation errors decrease to zero. Finally, numerical simulations are performed to confirm the effectiveness of the proposed scheme.

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

The Controller Design for Lane Following with 3-Degree of Freedom Vehicle Dynamics (3자유도 차량모델을 이용한 차선추종 µ 제어기 설계)

  • Ji, Sang-Won;Lim, Tae-Woo;You, Sam-Sang;Kim, Hwan-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.3
    • /
    • pp.72-81
    • /
    • 2013
  • Many articles have been published about a 2-degree of freedom model that includes the lateral and yaw motions for controller synthesis in intelligent transport system applications. In this paper, a 3-degree of freedom linear model that includes the roll motion is developed to design a robust steering controller for lane following maneuvers using ${\mu}$-synthesis. This linear perturbed system includes a set of parametric uncertainties in cornering stiffness and unmodelled dynamics in steering actuators. The state-space model with parametric uncertainties is represented in linear fractional transformation form. Design purpose can be obtained by properly choosing the frequency dependent weighting functions. The objective of this study is to keep the tracking error and steering input energy small in the presence of variations of the cornering stiffness coefficients. Furthermore, good ride quality has to be achieved against these uncertainties. Frequency-domain analyses and time-domain numerical simulations are carried out in order to evaluate these performance specifications of a given vehicle system. Finally, the simulation results indicate that the proposed robust controller achieves good performance over a wide range of uncertainty for the given maneuvers.

Chattering Reduction of Variable Structure Controller for Position System of Induction Motor (유도전동기의 위치제어 시스템을 위한 가변구조제어기의 떨림저감)

  • Kim, Young-Jo;Kim, Hyun-Jung
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.39-47
    • /
    • 1998
  • It has been known that variable structure control(VSC) has theoretically powerful control technique of providing fast response, no overshoot, and very robust control with respect to system parameter variations and disturbances. However, the technique has not become more widely extended in the industrial circles because chattering phenomenon which may excite high-frequency unmodelled plant dynamics and damage to system components exists. In this paper, a modified variable structure control(MVSC) is developed to alleviate these problems which are applied to the position control of induction motor. While the conventional VSC makes the structure of the system change with high-frequency switching on the center of the one switching surface, in the MVSC two switching surface are used to establish a sliding sector. The structure of the system will be changed with low-frequency switching. Therefore, the proposed algorithm has the properties of reducing chattering, retaining the benefits achieved in the conventional VSC, and working even under the influences of parameter variations. Experimental results show the effectiveness of the control strategy proposed here for the position control of induction motor.

  • PDF

Preliminary Performance Analysis of Satellite Formation Flying Testbed by Attitude Tracking Experiment (자세추적 실험을 통한 인공위성 편대비행 테스트베드의 예비 성능분석)

  • Eun, Youngho;Park, Chandeok;Park, Sang-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.416-422
    • /
    • 2016
  • This paper presents preliminary performance analysis of a satellite formation flying testbed, which is under development by Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University. A model reference adaptive controller (MRAC) with a first-order reference model is chosen to enhance the response of reaction wheel system which is subject to uncertainties caused by unmodelled dynamics and measurement noise. In addition, an on-line parameter estimation (OPE) technique based on the least square is combined to eliminate the effect of angular measurement noise by estimating the moment of inertia. Both numerical simulations and hardware experiments with MRAC support the effectiveness and applicability of the adaptive control scheme, which maintains the tracking error below $0.25^{\circ}$ for the entire time span. However, the high frequency control input generated in hardware experiment strongly suggests design modifications to reduce the effect of deadzone.