• Title/Summary/Keyword: Unmatched uncertainty

Search Result 7, Processing Time 0.026 seconds

Variable structure control for matched and unmatched uncertainty with quadratic criterion

  • Rhee, Bond-Jae;Park, Ju-Hyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.458-463
    • /
    • 1997
  • In this paper, we propose a variable structure control approach for the system with matched and unmatched uncertainty. By using time-varying sliding mode, the reaching mode is removed, and the design methodology represents a realistic design approach with quadratic criterion for systems incorporating both matched and unmatched uncertainties. The criterion contains states and linear part of input for all time. The practical application of the control strategy is presented in the design of a stability augmentation system for an aircraft is presented.

  • PDF

A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A Dynamic Output Feedback Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty (부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 동적 출력 궤환 가변 구조 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2066-2072
    • /
    • 2010
  • In this paper, a variable structure dynamic output feedback controller with an transformed sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty, matched input matrix uncertainty, and disturbance satisfying some conditions. This paper is extended from the results of the static output feedback VSS in [9]. To effectively remove the reaching phase problems, an initial condition of the dynamic output is determined. The previous some limitations on the dynamic output feedback variable structure controller is overcome in this systematic design. A stabilizing control is designed to generate the sliding mode on the predetermined sliding surface S=0 and as a results the closed loop exponential stability is obtained and proved together with the existence condition of the sliding mode on S=0 for all unmatched system matrix uncertainties. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A Robust Sliding Mode Controller for Unmatched Uncertain Severe Sate Time-Delay Systems (큰 상태변수 시간 지연 부정합조건 불확실성 시스템을 위한 강인한 슬라이딩 모드 제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1894-1899
    • /
    • 2010
  • This note is concerned with a robust sliding mode control(SMC) for a class of unmatched uncertain system with severe commensurate state time delay. The suggested method is extended to the control of severe state time delay systems with unmatched uncertainties except the matched input matrix uncertainty. A transformed sliding surface is proposed and a stabilizing control input is suggested. The closed loop stability together with the existence condition of the sliding mode on the proposed sliding surface is investigated through one Lemma and two Theorems by using the Lyapunov direct method with the concept of the control Lyapunov function instead of complex Lyapunov-Kravoskii functionals. Through an illustrative example and simulation study, the usefulness of the main results is verified.

Robust Tracking Control of a Ball and Beam System using Optimal Bang-Bang Input (최적의 Bang-Bang 입력을 이용한 볼-빔 시스템의 강인한 추적 제어)

  • Lee, Kyung-Tae;Choi, Ho-Lim
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.110-120
    • /
    • 2018
  • In this paper, we apply the input-output linearization technique to tracking the follow-up trajectory r(t) in the ball-beam system. There exist system disturbance and various uncertainties, the conventional input-output linearization based control yields some noticeable errors in tracking performance. As a result, a new robust control technique for the uncertainty of the system was proposed and its improved performance verified through simulation and experimental results. So, more realistic system model is obtained with unmatched uncertainties and disturbance. Then, in order to improve the control performance, a new optimal bang-bang control input is additionally added.

Robust Control for the System with Unmatched Uncertainty (입력정합조건을 만족하지 않는 시스템에 대한 강인 제어)

  • Jeon, Bo-Kyoung;Chang, Pyung-Huh;Park, Juyi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.95-101
    • /
    • 2001
  • Most robust control schemes for stabilizing the systems with uncertainties require that the systems are satisfied with matching conditions. This paper is proposed to robust control using the time delay estimation for the nonlinear single input systems not satisfying the matching conditions. Synthetic input concept is used to design the control law. The unmatched uncertainties considered in this paper are more general than other studies and they need not a special form or information about their bound. We applied the proposed method to a single pendulum with a motor system.

  • PDF

Robust Backstepping Control Using Time Delay Estimation (시간 지연 추정을 이용한 강인 Backstepping 제어)

  • Kim, Seong-Tae;Chang, Pyung-Hun;Kang, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1833-1844
    • /
    • 2004
  • A controller is proposed for the robust backstepping control of a class of nonlinear multiple-input multiple-output (MIMO) systems which can be converted to a strict feedback form. The proposed robust backstepping control scheme follows a systematic procedure for the design of control laws and uses time delay estimation (TDE) to estimate the uncertainties such as parameter variations, unknown disturbances, and unmodeled dynamics, etc. The proposed controller can be also applied to nonlinear MIMO systems with unmatched uncertainties. Stability analysis of the closed-loop system which contains the plant and the proposed controller is also studied and hereby a sufficient stability condition for the closed-loop system is proposed. The simulation results show that the control scheme works well with uncertainties and the proposed stability condition is valid. The controller is experimentally verified on a single-link flexible arm to show the effectiveness of the proposed scheme in the complicated systems with uncertainties.