• Title/Summary/Keyword: Unmanned marine vehicle

Search Result 63, Processing Time 0.021 seconds

Implementation and field test for autonomous navigation of manta UUV (만타형 무인 잠수정의 개발과 실해역 성능시험)

  • Ko, Sung-Hyub;Kim, Dong-Hee;Kim, Joon-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.644-652
    • /
    • 2013
  • This paper describes the development and field experiments of Manta-type Unmanned Underwater Vehicle (UUV). Various simulations for Manta UUV are performed by using the nonlinear 6-DOF motion of equations. Through this simulation we verified the motion performances of Manta UUV. To acquire the blueprint of Manta UUV, it was designed with the simulation results. The Manta UUV uses a Doppler Velocity Log (DVL), gyrocompass, GPS, pressure sensor and other minor sensors, applied to measure the motion, position and path of Manta UUV. For its propulsion and changing a direction in the underwater, one vertical fin and four horizontal fins are installed at the hull of UUV. The Manta UUV system was verified with motion and autonomous navigation test at field.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

Centralized routing method of unmanned aerial vehicle using vehicular Ad Hoc networks (차량 네트워크 기반 중앙관리형 무인비행체 경로 유도 시스템)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.830-835
    • /
    • 2016
  • With the relaxation of regulations on unmanned aerial vehicles (UAVs) in the USA, the development of related industries is expected. Hence, it is anticipated that the number the UAVs will reach approximately 600,000 in the USA in 2017. However, automated flights of commercial UAVs are restricted owing to concerns about accidents. To deal with the possibility of collisions, several studies on collision prevention and the routing of UAVs have been conducted. However, these studies do not deal with various situations dynamically or provide efficient solutions. Therefore, we propose a centralized routing method for the UAV that uses vehicular networks. In the proposed scheme, vehicular networks regard UAVs as data packets to be routed. Accordingly, the proposed method reduces UAV processing power required for route searches. In addition, the routing efficiency for UAV flight paths can be improved since congestion can be minimized by using a vehicular network.

A Study on the Improvement of Color Detection Performance of Unmanned Salt Collection Vehicles Using an Image Processing Algorithm (이미지 처리 알고리즘을 이용한 무인 천일염 포집장치의 색상 검출 성능 향상에 관한 연구)

  • Kim, Seon-Deok;Ahn, Byong-Won;Park, Kyung-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1054-1062
    • /
    • 2022
  • The population of Korea's solar salt-producing regions is rapidly aging, resulting in a decrease in the number of productive workers. In solar salt production, salt collection is the most labor-intensive operation because existing salt collection vehicles require human operators. Therefore, we intend to develop an unmanned solar salt collection vehicle to reduce manpower requirements. The unmanned solar salt collection vehicle is designed to identify the salt collection status and location in the salt plate via color detection, the color detection performance is a crucial consideration. Therefore, an image processing algorithm was developed to improve color detection performance. The algorithm generates an around-view image by using resizing, rotation, and perspective transformation of the input image, set the RoI to transform only the corresponding area to the HSV color model, and detects the color area through an AND operation. The detected color area was expanded and noise removed using morphological operations, and the area of the detection region was calculated using contour and image moment. The calculated area is compared with the set area to determine the location case of the collection vehicle within the salt plate. The performance was evaluated by comparing the calculated area of the final detected color to which the algorithm was applied and the area of the detected color in each step of the algorithm. It was confirmed that the color detection performance is improved by at least 25-99% for salt detection, at least 44-68% for red color, and an average of 7% for blue and an average of 15% for green. The proposed approach is well-suited to the operation of unmanned solar salt collection vehicles.

Mathematical Modeling for Dynamic Performance Analysis and Controller Design of Manta-type UUV (만타형상 무인잠수정의 운동성능 해석 및 제어기 설계를 위한 비선형 수학모델 개발)

  • Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.21-28
    • /
    • 2010
  • This paper describes the mathematical model and controller design for Manta-type Unmanned Underwater Test Vehicle (MUUTV) with 6 DOF nonlinear dynamic equations. The mathematical model contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients which were obtained through the PMM (Planar Motion Mechanism) test. Based on the 6 DOF dynamic equations, numerical simulations have been performed to analyze the dynamic performances of the MUUTV. In addition, using the mathematical model PID and sliding mode controller are constructed for the diving and steering maneuver. Simulation results show that the control performances of the MUUTV and compared with these of NPS (Naval Postgraduate School) AUV II.

A Study on the Environment of USV Wireless Communication (무인선의 무선통신환경에 관한 연구)

  • Hong, Sin-Pyo;Jeong, Jong-Won;Lee, Chi-Won;Lee, Ho-Sik;Choi, Han-Woo;Park, In-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.53-57
    • /
    • 2009
  • Unmanned surface vehicles (USVs) conduct various missions while exchanging information with control centers. Maritime security, coastal surveillance, and sea surface and undersea inspections are included in the important missions of USVs. To carry out these missions, large amounts of information are required from sensors, such as cameras, radars, and sonars. High bandwidth wireless communication is necessary to send this information to the control center in real time. In general, USVs are made using small boats. The motions of small boats are easily influenced by sea waves and the magnitude of changes in the attitude is large and the period of the changes is short in comparison with large ships. Thus, the direction of an antenna beam pattern for a wireless communication system in a USV can change rapidly, and with a large magnitude. In addition, since the reflection of electromagnetic waves on the sea surface is not negligible, the effect of multipath noises on the wireless communication system must be considered carefully. There are also several other elements that negatively affect wireless communication systems in USVs. This paper presents the wireless communication environment to be considered in the design and implementation of wide bandwidth communication systems for USVs. Short test results for wireless communication on the sea are also given.

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

Identification of Four-DOF Dynamics of a RIB using Sea Trial Tests (I) - Sea Trial Test, Resistance and Propulsion Model (해상시험 결과를 이용한 RIB의 4자유도 동력학 식별 (I) - 해상시험, 저항·추진 모델)

  • Yoon, Hyeon-Kyu;Yun, Kun-Hang;Park, In-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • RIB(Rigid Inflatable Boat) is widely used for coastal transportation in the commercial use and for ISR(Intelligence, Surveillance, Reconnaissance) in the military use. Since RIB is around 10 meters in length and over 30 knots in speed, its motion characteristics in waves is quite different from a large scale ship. When it turns, large roll occurs and heeling direction is opposite to the large ship's case. Currently, many countries are developing USV(Unmanned Surface Vehicle) of which type is RIB. In order to develop high performance autopilot and way point controller, it is very important to identify RIB's motion characteristics. In this paper, sea trial test results of a 7-meter RIB such as speed, turning, zig-zag, and way point control tests were represented and its resistance and propulsion model was identified by using sea trial data and Savitsky's formula. In addition, the state space model which will be used in the identification of the four-degree-of-freedom dynamics in the next step was formulated and the identification procedure was proposed.

A Study of the Control System on the Manta-type UUV (만타형 UUV의 제어기 설계에 관한 연구)

  • Kim, Hyeong-Dong;Kim, Joon-Young;Kim, Si-Hong;Lee, Seung-Keon
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.359-363
    • /
    • 2011
  • In this paper, automatic control system for the Manta UUV are constructed for the diving and steering maneuver. PID controller and Fuzzy controller are adopted in this system. Based on the 6DOF dynamic equation, simulation program has been developed using the Matlab. Using this program, depth control system and heading control system with tidal current are evaluated.

Image analysis technology with deep learning for monitoring the tidal flat ecosystem -Focused on monitoring the Ocypode stimpsoni Ortmann, 1897 in the Sindu-ri tidal flat - (갯벌 생태계 모니터링을 위한 딥러닝 기반의 영상 분석 기술 연구 - 신두리 갯벌 달랑게 모니터링을 중심으로 -)

  • Kim, Dong-Woo;Lee, Sang-Hyuk;Yu, Jae-Jin;Son, Seung-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.89-96
    • /
    • 2021
  • In this study, a deep-learning image analysis model was established and validated for AI-based monitoring of the tidal flat ecosystem for marine protected creatures Ocypode stimpsoni and their habitat. The data in the study was constructed using an unmanned aerial vehicle, and the U-net model was applied for the deep learning model. The accuracy of deep learning model learning results was about 0.76 and about 0.8 each for the Ocypode stimpsoni and their burrow whose accuracy was higher. Analyzing the distribution of crabs and burrows by putting orthomosaic images of the entire study area to the learned deep learning model, it was confirmed that 1,943 Ocypode stimpsoni and 2,807 burrow were distributed in the study area. Through this study, the possibility of using the deep learning image analysis technology for monitoring the tidal ecosystem was confirmed. And it is expected that it can be used in the tidal ecosystem monitoring field by expanding the monitoring sites and target species in the future.