• Title/Summary/Keyword: Unmanned ground vehicles

Search Result 135, Processing Time 0.031 seconds

Comparing Energy Consumption following Flight Pattern for Quadrotor

  • Jee, Sunho;Cho, Hyunchan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.747-753
    • /
    • 2018
  • Currently, many companies have succeeded in logistics delivery experiments utilizing drone and report it. When a drone is used commercially, long-term flight is an important performance that a drone should have. However, unlike vehicles operated on the ground, drone is a vehicle that continues to consume energy when maintaining the current altitude or moving to the destination. Therefore, the drones can fly for a long time as the capacity of the battery is large, but the batteries with large capacity are restricted by heavy weight and it acts as a limiting factor in a commercial use. To address this issue, we attempt to compare how far we can fly than forward flight based on the flight pattern with the same energy consumption condition. In this paper, the comparison of energy consumption was performed in three flight pattern, forward flight without altitude change and forward flight with altitude change, by computer simulation and it shows the increasing of flight distances when the quadrotor fly with altitude change from high altitude to low altitude.

An Architecture for Key Management in Hierarchical Mobile Ad-hoc Networks

  • Rhee, Kyung-Hyune;Park, Young-Ho;Gene Tsudik
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.156-162
    • /
    • 2004
  • In recent years, mobile ad-hoc networks have received a great deal of attention in both academia and industry to provide anytime-anywhere networking services. As wireless networks are rapidly deployed, the security of wireless environment will be mandatory. In this paper, we describe a group key management architecture and key agreement protocols for secure communication in mobile ad-hoc wireless networks (MANETs) overseen by unmanned aerial vehicles (UAVs). We use implicitly certified public keys method, which alleviates the certificate overhead and improves computational efficiency. The architecture uses a two-layered key management approach where the group of nodes is divided into: 1) Cell groups consisting of ground nodes and 2) control groups consisting of cell group managers. The chief benefit of this approach is that the effects of a membership change are restricted to the single cell group.

A Method for Terrain Cover Classification Using DCT Features (DCT 특징을 이용한 지표면 분류 기법)

  • Lee, Seung-Youn;Kwak, Dong-Min;Sung, Gi-Yeul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.683-688
    • /
    • 2010
  • The ability to navigate autonomously in off-road terrain is the most critical technology needed for Unmanned Ground Vehicles(UGV). In this paper, we present a method for vision-based terrain cover classification using DCT features. To classify the terrain, we acquire image from a CCD sensor, then the image is divided into fixed size of blocks. And each block transformed into DCT image then extracts features which reflect frequency band characteristics. Neural network classifier is used to classify the features. The proposed method is validated and verified through many experiments and we compare it with wavelet feature based method. The results show that the proposed method is more efficiently classify the terrain-cover than wavelet feature based one.

3D Information based Visualization System for Real-Time Teleoperation of Unmanned Ground Vehicles (무인 지상 로봇의 실시간 원격 제어를 위한 3차원 시각화 시스템)

  • Jang, Ga-Ram;Bae, Ji-Hun;Lee, Dong-Hyuk;Park, Jae-Han
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.220-229
    • /
    • 2018
  • In the midst of disaster, such as an earthquake or a nuclear radiation exposure area, there are huge risks to send human crews. Many robotic researchers have studied to send UGVs in order to replace human crews at dangerous environments. So far, two-dimensional camera information has been widely used for teleoperation of UGVs. Recently, three-dimensional information based teleoperations are attempted to compensate the limitations of camera information based teleoperation. In this paper, the 3D map information of indoor and outdoor environments reconstructed in real-time is utilized in the UGV teleoperation. Further, we apply the LTE communication technology to endure the stability of the teleoperation even under the deteriorate environment. The proposed teleoperation system is performed at explosive disposal missions and their feasibilities could be verified through completion of that missions using the UGV with the Explosive Ordnance Disposal (EOD) team of Busan Port Security Corporation.

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa;Sangman Moh
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.68-76
    • /
    • 2023
  • Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

Pin Distribute Method of Twist Cable at Military Unmanned Vehicle Wiring Unit Connector (군용 무인 이동체 배선장치 커넥터에서 트위스트 케이블 핀 배치 최적화 방안)

  • Eun, Hee-hyun;Roh, Dong-gyu;Kwak, Gyu-min;Kim, Jae-seung;Lee, Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.245-250
    • /
    • 2020
  • Currently, unmanned military vehicles under development in Korea have more devices to carry out various missions, and interface cables between them are also increasing. In addition, due to a small space problem inside the unmanned vehicle, devices are required to be miniaturized and integrated. For two reasons, connectors also need to be selected, which makes them vulnerable to noise due to the closer distance between the pins. In this paper, we analyzed how much the magnetic field produced by noise at the connector pin where cable twist is released affects the surrounding pin and presented the guide for optimal pin placement. First, the effect of magnetic field is greater than the crosstalk between pin and pin. Second, the magnetic field on both sides between + and - is strong when approaching one step with noise source. Third, the magnetic field strength is improved when setting the ground pin as the ground pin between the noise and the original signal when approaching the A noise source and the two steps. Fourth, in the case of a differential mode communication, the optimal placement area of the sensitive signal was presented according to positions Tx± and Rx±.

Analysis of Efficient Health Data Transmission Methods based on the Fusion of WBAN and FANET (WBAN과 FANET 융합 기반의 효율적인 신체 데이터 전송 방법 분석)

  • Ha, Il-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.386-394
    • /
    • 2017
  • FANET is an ad hoc network formed among the unmanned aircraft in the three-dimensional space for data transfer. Most of the research on FANET application has focused on the use of the camera sensor mounted on the unmanned aircraft to collect data from the ground, and process and delivery of the data for a specific purpose. However, the research on the fusion of WBAN and FANET that collects the data of the human body and passes through the FANET has not been studied much until now. Therefore, in this study, we study the data transmission system that collects the human body data of people working in the areas that are vulnerable to communication difficulties and passes the collected data through the FANET. In particular we analyze the possible methods to transfer the emergency data of the body in the fusion network of WBAN and FANET and provide a data transfer model that can be transmitted most efficiently.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.

Research of Small Fixed-Wing Swarm UAS (소형 고정익 무인기 군집비행 기술 연구)

  • Myung, Hyunsam;Jeong, Junho;Kim, Dowan;Seo, Nansol;Kim, Yongbin;Lee, Jaemoon;Lim, Heungsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.971-980
    • /
    • 2021
  • Recently popularized drone technologies have revealed that low-cost small unmanned aerial vehicles(UAVs) can be a significant threat to prevailing power by operating in group or in swarms. Researchers in many countries have tried to utilize integrated swarm unmanned aerial system(SUAS) in the battlefield. Agency for Defense Development also identified four core technologies in developing SUAS: swarm control, swarm network, swarm information, and swarm collaboration, and the authors started researches on swarm control and network technologies in order to be able to operate vehicle platforms as the first stage. This paper introduces design and integration of SUAS consisting of small fixed-wing UAVs, swarm control and network algorithms, a ground control system, and a launcher, with which swarm control and network technologies have been verified by flight tests. 19 fixed-wing UAVs succeeded in swarm flight in the final flight test for the first time as a domestic research.