• 제목/요약/키워드: Unmanned aerial vehicle monitoring

검색결과 130건 처리시간 0.022초

지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발 (Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm)

  • 정영준;이종혁;이상익;오부영;;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

무인항공 사진촬영을 통한 비금속 노천광산 정밀 수치지형모델 구축 (Construction of Precise Digital Terrain Model for Nonmetal Open-pit Mine by Using Unmanned Aerial Photograph)

  • 조성준;방은석;강일모
    • 자원환경지질
    • /
    • 제48권3호
    • /
    • pp.205-212
    • /
    • 2015
  • 전 세계적으로 이슈가 되고 있는 소형 무인항공기를 탑재체로 한 항공삼각측량 기술을 국내의 광산개발 현장에 적용하여 활용성을 검증하였다. 대상광산은 경상남도 경주시에 위치한 감포 46호 스멕타이트 광산으로 노천채광 광산이다. 멀티콥터인 DJI S1000에 Cannon Mark III 카메라를 탑재하여 $600m{\times}380m$ 영역을 중첩하며 448장의 사진을 촬영한 후, AgiSoft사의 photoscan 소프트웨어를 이용해 자료처리하여 정사영상과 정밀 수치지형모델을 제작하였다. 6개의 지상 기준점을 이용해 정밀도 10cm 이내의 항공 삼각측량 자료를 생산하였으며, 3D 지질모델링 소프트웨어로 수치지형모델과 정사 영상을 익스포트하여 3D 지질모델링을 위한 Topo surface를 제작하였다. 1시간 이내의 짧은 촬영시간으로 고정밀의 항공측량 자료 확보가 가능해 노천광산의 주기적인 촬영을 통한 채광량과 사면붕괴 모니터링이 적은 비용과 시간으로 가능함을 확인하였고, 항공삼각측량결과와 3D 지질모델링의 직접적인 연계 기술에 의해 노천광산 채광에 의한 지표면 변화를 즉각적으로 반영할 수 있어 생산관리의 효율성을 증대할 수 있으리라 여겨진다.

UAS 기반의 수체탐지를 위한 영상분류기법 비교연구 (A Comparative Study of Image Classification Method to Detect Water Body Based on UAS)

  • 이근상;김석구;최연웅
    • 한국지리정보학회지
    • /
    • 제18권3호
    • /
    • pp.113-127
    • /
    • 2015
  • 최근 무인비행시스템(UAS)에 대한 관심이 높아지고 있으며, 홍수시 UAS를 활용하여 침수모니터링을 수행하기 위해서는 촬영된 영상으로부터 수체를 효과적으로 탐지할 수 있는 기법 개발이 필요하다. 본 연구에서는 RGB와 NIR+RG 밴드를 탑재한 UAS를 활용하여 영상을 획득하였으며, 감독분류기법을 적용하여 수체탐지 정확도를 평가하였다. 먼저 RGB 영상에 의한 수체의 영상분류 정확도 평가에서는 인공신경망과 최소거리법의 Kappa 계수가 각각 0.791과 0.783로 높게 나타났으며, 최대우도법이 0.561로 가장 낮게 나타났다. 또한 NIR+RG 영상에 의한 수체의 영상분류 정확도 평가에서는 Mahalanobis와 최소거리법이 각각 0.869와 0.830으로 높게 나타났으며, 인공신경망법이 0.779로 매우 낮게 나타났다. 특히 RGB 밴드에서는 송산유원지의 수목이나 초지가 수체로 오분류되는 문제가 발생하였으나, NIR+RG 밴드에서는 이러한 문제가 많이 개선되었다. 따라서, RGB 밴드에 비해 NIR+RG 밴드를 탑재한 영상이 Mahalanobis와 최소거리법을 적용시 수체를 탐지하는데 효과적인 것으로 나타났다.

무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정 (Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance)

  • 유형석;아나 클림코브스카;최경아;이임평
    • 대한원격탐사학회지
    • /
    • 제34권2_2호
    • /
    • pp.393-406
    • /
    • 2018
  • 매년 해양에서 많은 사고가 빈번하게 발생하고 불법 조업이 성행하고 있으며, 그 규모와 빈도도 증가하고 있다. 이로 인한 인명이나 재산 피해를 경감시키기 위하여 신속한 원격 감시 수단이 필요하다. 이러한 감시 수단의 효과적인 플랫폼으로써 무인항공기가 주목을 받고 있다. 해양 사고나 불법 조업이 이루어지는 상황에서 주된 감시 대상은 선박이 될 것이다. 이에 본 연구에서는 무인항공기 기반 선박 감시 체계를 제안하고, 무인항공기 센서 데이터를 이용하여 선박 위치를 결정하는 방법을 제시하고자 한다. 제안된 방법에서 먼저 사전에 수행된 시스템 캘리브레이션 결과와 영상 취득 시각에 취득된GPS/INS데이터를 이용해서 개별 영상을 취득한 위치와 자세를 결정한다. 또한, 개별 영상으로부터 선박을 자동 또는 반자동으로 탐지한 후 탐지된 지점들의 절대좌표를 결정한다. 제안된 방법을 200 m, 350 m, 500 m 고도에서 취득된 실측 데이터에 적용한 결과로 각각 4.068 m, 8.916 m, 13.374 m의 정확도로 선박 위치를 결정할 수 있었다. 수로측량의 최소기준에 따라 항해에 덜 중요한 해안선 및 지형 위치 항목에서 200 m 데이터의 선박위치결정 결과는 특등급, 350 m와 500 m 데이터의 결과는 1a등급을 만족한다. 제안된 방법은 다양한 목적의 해양 감시 또는 측량에 효과적으로 활용될 수 있을 것으로 판단한다.

성덕대왕신종의 3차원 디지털 기록화 의미와 모니터링 기초자료 구축 (Significance of Three-Dimensional Digital Documentation and Establishment of Monitoring Basic Data for the Sacred Bell of Great King Seongdeok)

  • 조영훈;송형록;이승은
    • 박물관보존과학
    • /
    • 제24권
    • /
    • pp.55-74
    • /
    • 2020
  • 성덕대왕신종은 현재 표면의 문양과 명문을 중심으로 부식물이 존재하고, 일부 마모 흔적이 관찰되는 만큼 보존상태에 대한 디지털 정밀 기록이 필요한 시점이다. 따라서 이 연구에서는 4종류의 3차원 스캐닝과 무인항공사진측량을 이용하여 성덕대왕신종의 디지털 기록화를 수행하였고, 영상처리를 통해 다양한 형상분석을 실시하였다. 먼저 지상레이저스캐닝과 무인항공사진측량의 융합모델링 결과는 성덕대왕신종과 종각의 상호 공간적 관계를 구축할 수 있어 향후 지진에 의한 구조적 변형을 모니터링하는데 기초자료로 활용될 수 있을 것으로 판단된다. 또한 선행자료에 비해 4~9배 정도 높은 해상도를 보인 정밀스캐닝 결과는 성덕대왕신종의 문양 및 명문 가시화에 상당히 유용한 정보를 제공했으며, 표면 보존상태 변화를 파악할 수 있는 기초데이터로 매우 적절하였다. 성덕대왕신종의 원형 보존에 3차원 스캐닝 결과를 적극 활용하기 위해서는 단기적으로 추가적인 스캔을 하여 형상변화 시점과 지점을 설정할 필요가 있다. 만약 단기모니터링을 통해 큰 형상 변화가 확인되지 않는다면 중장기모니터링으로 전환할 필요가 있다.

Numerical evaluation of gamma radiation monitoring

  • Rezaei, Mohsen;Ashoor, Mansour;Sarkhosh, Leila
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.807-817
    • /
    • 2019
  • Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.

3D Point Cloud 기반 4D map 생성을 통한 노후화 시설물 유지 관리 방안 (The Maintenance and Management Method of Deteriorated Facilities Using 4D map Based on UAV and 3D Point Cloud)

  • 김용구;권종욱
    • 한국건축시공학회지
    • /
    • 제19권3호
    • /
    • pp.239-246
    • /
    • 2019
  • 국내 시설물의 노후화가 급속히 진행되고 있음에 따라 정부는 노후화 시설물의 안정성 검측과 유지관리에 대한 관심을 높이고 있다. 이에 본 연구는 대구광역시 서구 비산 4동/내당 2, 3동의 노후화 지역일대를 조사하고, 비행촬영을 통해 노후화 시설물에 대한 데이터를 획득하여 3D 지도를 구현하였다. 또한 3D 지도에 객관적/주관적 데이터를 추가적으로 기입함으로써 주민들이 쉽게 이해할 수 있으며, 관리자가 노후화 시설물에 대한 유지 보수 관리를 보다 수월하게 진행할 수 있는 4D 지도 생성 방안을 제시하였다.

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

YOLOv8과 무인항공기를 활용한 고해상도 해안쓰레기 매핑 (High-Resolution Mapping Techniques for Coastal Debris Using YOLOv8 and Unmanned Aerial Vehicle)

  • 박수호;김흥민;김영민;이인지;박미소;김탁영;장선웅
    • 대한원격탐사학회지
    • /
    • 제40권2호
    • /
    • pp.151-166
    • /
    • 2024
  • 해안쓰레기 문제는 전 세계적으로 환경에 대한 심각한 위협이 되고 있다. 본 연구에서는 딥러닝과 원격탐사 기술을 활용하여 해안쓰레기의 모니터링 방법을 개선하고자 하였다. 이를 위해 You Only Look Once (YOLO)v8 모델을 이용한 객체 탐지 기법을 적용하여 우리나라 주요 해안쓰레기 11종에 대한 대규모 이미지 데이터셋을 구축하고, 실시간으로 쓰레기를 탐지 및 분석할 수 있는 프로토콜(Protocol)을 제안한다. 낙동강 하구에 위치한 신자도를 대상으로 드론 이미지 촬영 및 자체 개발한 YOLOv8 기반의 분석 프로그램을 적용하여 해안쓰레기 성상별 핫스팟을 식별하였다. 이러한 매핑(Mapping) 및 분석 기법의 적용은 해안쓰레기 관리에 효과적으로 활용될 수 있을 것으로 기대된다.

태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지 (Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images)

  • 정세정;박주언;이원희;한유경
    • 대한원격탐사학회지
    • /
    • 제36권5_2호
    • /
    • pp.989-1006
    • /
    • 2020
  • 건물탐지 기반의 건물 변화 모니터링은 발사예정인 차세대 중형위성 1, 2호와 같은 고해상도 다시기 광학 위성영상을 이용한 인공 구조물 모니터링 측면에서 가장 중요한 분야 중 하나이다. 하지만 지표면에 위치하는 건물들의 형태와 크기는 다양하며, 이들 주변에 존재하는 그림자 또는 나무 등에 의해 정확한 건물탐지에 어려움이 따른다. 또한, 영상 촬영 당시의 플랫폼의 방위각(Azimuth angle)과 고도각(Elevation angle)에 따라 생기는 기복 변위로 인해 건물 변화탐지 수행 시 다수의 변화 오탐지가 발생하게 된다. 이에 본 연구에서는 건물 변화탐지 결과 향상을 위해 다시기 영상 취득 당시의 태양의 방위각과 그에 따른 그림자의 주방향(Main direction)을 이용한 객체기반 건물탐지를 수행하였으며, 이후 플랫폼의 방위각과 고도각을 이용한 건물 변화탐지를 수행하였다. 고해상도 영상에 객체 분할 기법을 적용한 후, Shadow intensity를 통해 그림자 객체만을 분류하였으며, 건물 후보군 탐지를 위해 각 객체의 Rectangular fit, GLCM(Gray-Level Co-occurrence Matrix) homogeneity 그리고 면적(Area)과 같은 특징(Feature) 정보들을 이용하였다. 그 후, 건물 후보군으로 탐지된 객체들의 중심과 태양의 방위각에 따른 건물 그림자 사이의 방향과 거리를 이용하여 최종 건물을 탐지하였다. 각 영상에서 탐지된 건물 객체 간 변화탐지를 위해 객체들 간의 단순 중첩, 플랫폼의 고도각에 따른 객체의 크기 비교, 그리고 플랫폼의 방위각에 따른 객체 간의 방향 비교 총 3가지의 방법을 제안하였다. 본 연구에서는 주거 밀집 지역을 연구지역으로 선정하였으며, KOMPSAT-3와 무인항공기(Unmanned Aerial Vehicle, UAV)의 이종 센서에서 취득된 고해상도 영상을 이용하여 실험 데이터를 생성하였다. 실험 결과, 특징 정보를 이용해 탐지한 건물탐지 결과의 F1-score는 KOMPSAT-3 영상과 무인항공기 영상에서 각각 0.488 그리고 0.696인 반면, 그림자를 고려한 건물탐지 결과의 F1-score는 0.876 그리고 0.867로 그림자를 고려한 건물탐지 기법의 정확도가 더 높은 것을 확인할 수 있었다. 또한, 그림자를 이용한 건물탐지 결과를 바탕으로 제안한 3가지의 건물 변화탐지 제안기법 중 플랫폼의 방위각에 따른 객체 간의 방향을 고려한 방법의 F1-score가 0.891로 가장 높은 정확도를 보이는 것을 확인할 수 있었다.