3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.
전 세계적으로 이슈가 되고 있는 소형 무인항공기를 탑재체로 한 항공삼각측량 기술을 국내의 광산개발 현장에 적용하여 활용성을 검증하였다. 대상광산은 경상남도 경주시에 위치한 감포 46호 스멕타이트 광산으로 노천채광 광산이다. 멀티콥터인 DJI S1000에 Cannon Mark III 카메라를 탑재하여 $600m{\times}380m$ 영역을 중첩하며 448장의 사진을 촬영한 후, AgiSoft사의 photoscan 소프트웨어를 이용해 자료처리하여 정사영상과 정밀 수치지형모델을 제작하였다. 6개의 지상 기준점을 이용해 정밀도 10cm 이내의 항공 삼각측량 자료를 생산하였으며, 3D 지질모델링 소프트웨어로 수치지형모델과 정사 영상을 익스포트하여 3D 지질모델링을 위한 Topo surface를 제작하였다. 1시간 이내의 짧은 촬영시간으로 고정밀의 항공측량 자료 확보가 가능해 노천광산의 주기적인 촬영을 통한 채광량과 사면붕괴 모니터링이 적은 비용과 시간으로 가능함을 확인하였고, 항공삼각측량결과와 3D 지질모델링의 직접적인 연계 기술에 의해 노천광산 채광에 의한 지표면 변화를 즉각적으로 반영할 수 있어 생산관리의 효율성을 증대할 수 있으리라 여겨진다.
최근 무인비행시스템(UAS)에 대한 관심이 높아지고 있으며, 홍수시 UAS를 활용하여 침수모니터링을 수행하기 위해서는 촬영된 영상으로부터 수체를 효과적으로 탐지할 수 있는 기법 개발이 필요하다. 본 연구에서는 RGB와 NIR+RG 밴드를 탑재한 UAS를 활용하여 영상을 획득하였으며, 감독분류기법을 적용하여 수체탐지 정확도를 평가하였다. 먼저 RGB 영상에 의한 수체의 영상분류 정확도 평가에서는 인공신경망과 최소거리법의 Kappa 계수가 각각 0.791과 0.783로 높게 나타났으며, 최대우도법이 0.561로 가장 낮게 나타났다. 또한 NIR+RG 영상에 의한 수체의 영상분류 정확도 평가에서는 Mahalanobis와 최소거리법이 각각 0.869와 0.830으로 높게 나타났으며, 인공신경망법이 0.779로 매우 낮게 나타났다. 특히 RGB 밴드에서는 송산유원지의 수목이나 초지가 수체로 오분류되는 문제가 발생하였으나, NIR+RG 밴드에서는 이러한 문제가 많이 개선되었다. 따라서, RGB 밴드에 비해 NIR+RG 밴드를 탑재한 영상이 Mahalanobis와 최소거리법을 적용시 수체를 탐지하는데 효과적인 것으로 나타났다.
매년 해양에서 많은 사고가 빈번하게 발생하고 불법 조업이 성행하고 있으며, 그 규모와 빈도도 증가하고 있다. 이로 인한 인명이나 재산 피해를 경감시키기 위하여 신속한 원격 감시 수단이 필요하다. 이러한 감시 수단의 효과적인 플랫폼으로써 무인항공기가 주목을 받고 있다. 해양 사고나 불법 조업이 이루어지는 상황에서 주된 감시 대상은 선박이 될 것이다. 이에 본 연구에서는 무인항공기 기반 선박 감시 체계를 제안하고, 무인항공기 센서 데이터를 이용하여 선박 위치를 결정하는 방법을 제시하고자 한다. 제안된 방법에서 먼저 사전에 수행된 시스템 캘리브레이션 결과와 영상 취득 시각에 취득된GPS/INS데이터를 이용해서 개별 영상을 취득한 위치와 자세를 결정한다. 또한, 개별 영상으로부터 선박을 자동 또는 반자동으로 탐지한 후 탐지된 지점들의 절대좌표를 결정한다. 제안된 방법을 200 m, 350 m, 500 m 고도에서 취득된 실측 데이터에 적용한 결과로 각각 4.068 m, 8.916 m, 13.374 m의 정확도로 선박 위치를 결정할 수 있었다. 수로측량의 최소기준에 따라 항해에 덜 중요한 해안선 및 지형 위치 항목에서 200 m 데이터의 선박위치결정 결과는 특등급, 350 m와 500 m 데이터의 결과는 1a등급을 만족한다. 제안된 방법은 다양한 목적의 해양 감시 또는 측량에 효과적으로 활용될 수 있을 것으로 판단한다.
성덕대왕신종은 현재 표면의 문양과 명문을 중심으로 부식물이 존재하고, 일부 마모 흔적이 관찰되는 만큼 보존상태에 대한 디지털 정밀 기록이 필요한 시점이다. 따라서 이 연구에서는 4종류의 3차원 스캐닝과 무인항공사진측량을 이용하여 성덕대왕신종의 디지털 기록화를 수행하였고, 영상처리를 통해 다양한 형상분석을 실시하였다. 먼저 지상레이저스캐닝과 무인항공사진측량의 융합모델링 결과는 성덕대왕신종과 종각의 상호 공간적 관계를 구축할 수 있어 향후 지진에 의한 구조적 변형을 모니터링하는데 기초자료로 활용될 수 있을 것으로 판단된다. 또한 선행자료에 비해 4~9배 정도 높은 해상도를 보인 정밀스캐닝 결과는 성덕대왕신종의 문양 및 명문 가시화에 상당히 유용한 정보를 제공했으며, 표면 보존상태 변화를 파악할 수 있는 기초데이터로 매우 적절하였다. 성덕대왕신종의 원형 보존에 3차원 스캐닝 결과를 적극 활용하기 위해서는 단기적으로 추가적인 스캔을 하여 형상변화 시점과 지점을 설정할 필요가 있다. 만약 단기모니터링을 통해 큰 형상 변화가 확인되지 않는다면 중장기모니터링으로 전환할 필요가 있다.
Airborne Gamma Ray Spectrometry (AGRS) with its important applications such as gathering radiation information of ground surface, geochemistry measuring of the abundance of Potassium, Thorium and Uranium in outer earth layer, environmental and nuclear site surveillance has a key role in the field of nuclear science and human life. The Broyden-Fletcher-Goldfarb-Shanno (BFGS), with its advanced numerical unconstrained nonlinear optimization in collaboration with Artificial Neural Networks (ANNs) provides a noteworthy opportunity for modern AGRS. In this study a new AGRS system empowered by ANN-BFGS has been proposed and evaluated on available empirical AGRS data. To that effect different architectures of adaptive ANN-BFGS were implemented for a sort of published experimental AGRS outputs. The selected approach among of various training methods, with its low iteration cost and nondiagonal scaling allocation is a new powerful algorithm for AGRS data due to its inherent stochastic properties. Experiments were performed by different architectures and trainings, the selected scheme achieved the smallest number of epochs, the minimum Mean Square Error (MSE) and the maximum performance in compare with different types of optimization strategies and algorithms. The proposed method is capable to be implemented on a cost effective and minimum electronic equipment to present its real-time process, which will let it to be used on board a light Unmanned Aerial Vehicle (UAV). The advanced adaptation properties and models of neural network, the training of stochastic process and its implementation on DSP outstands an affordable, reliable and low cost AGRS design. The main outcome of the study shows this method increases the quality of curvature information of AGRS data while cost of the algorithm is reduced in each iteration so the proposed ANN-BFGS is a trustworthy appropriate model for Gamma-ray data reconstruction and analysis based on advanced novel artificial intelligence systems.
국내 시설물의 노후화가 급속히 진행되고 있음에 따라 정부는 노후화 시설물의 안정성 검측과 유지관리에 대한 관심을 높이고 있다. 이에 본 연구는 대구광역시 서구 비산 4동/내당 2, 3동의 노후화 지역일대를 조사하고, 비행촬영을 통해 노후화 시설물에 대한 데이터를 획득하여 3D 지도를 구현하였다. 또한 3D 지도에 객관적/주관적 데이터를 추가적으로 기입함으로써 주민들이 쉽게 이해할 수 있으며, 관리자가 노후화 시설물에 대한 유지 보수 관리를 보다 수월하게 진행할 수 있는 4D 지도 생성 방안을 제시하였다.
The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.
해안쓰레기 문제는 전 세계적으로 환경에 대한 심각한 위협이 되고 있다. 본 연구에서는 딥러닝과 원격탐사 기술을 활용하여 해안쓰레기의 모니터링 방법을 개선하고자 하였다. 이를 위해 You Only Look Once (YOLO)v8 모델을 이용한 객체 탐지 기법을 적용하여 우리나라 주요 해안쓰레기 11종에 대한 대규모 이미지 데이터셋을 구축하고, 실시간으로 쓰레기를 탐지 및 분석할 수 있는 프로토콜(Protocol)을 제안한다. 낙동강 하구에 위치한 신자도를 대상으로 드론 이미지 촬영 및 자체 개발한 YOLOv8 기반의 분석 프로그램을 적용하여 해안쓰레기 성상별 핫스팟을 식별하였다. 이러한 매핑(Mapping) 및 분석 기법의 적용은 해안쓰레기 관리에 효과적으로 활용될 수 있을 것으로 기대된다.
건물탐지 기반의 건물 변화 모니터링은 발사예정인 차세대 중형위성 1, 2호와 같은 고해상도 다시기 광학 위성영상을 이용한 인공 구조물 모니터링 측면에서 가장 중요한 분야 중 하나이다. 하지만 지표면에 위치하는 건물들의 형태와 크기는 다양하며, 이들 주변에 존재하는 그림자 또는 나무 등에 의해 정확한 건물탐지에 어려움이 따른다. 또한, 영상 촬영 당시의 플랫폼의 방위각(Azimuth angle)과 고도각(Elevation angle)에 따라 생기는 기복 변위로 인해 건물 변화탐지 수행 시 다수의 변화 오탐지가 발생하게 된다. 이에 본 연구에서는 건물 변화탐지 결과 향상을 위해 다시기 영상 취득 당시의 태양의 방위각과 그에 따른 그림자의 주방향(Main direction)을 이용한 객체기반 건물탐지를 수행하였으며, 이후 플랫폼의 방위각과 고도각을 이용한 건물 변화탐지를 수행하였다. 고해상도 영상에 객체 분할 기법을 적용한 후, Shadow intensity를 통해 그림자 객체만을 분류하였으며, 건물 후보군 탐지를 위해 각 객체의 Rectangular fit, GLCM(Gray-Level Co-occurrence Matrix) homogeneity 그리고 면적(Area)과 같은 특징(Feature) 정보들을 이용하였다. 그 후, 건물 후보군으로 탐지된 객체들의 중심과 태양의 방위각에 따른 건물 그림자 사이의 방향과 거리를 이용하여 최종 건물을 탐지하였다. 각 영상에서 탐지된 건물 객체 간 변화탐지를 위해 객체들 간의 단순 중첩, 플랫폼의 고도각에 따른 객체의 크기 비교, 그리고 플랫폼의 방위각에 따른 객체 간의 방향 비교 총 3가지의 방법을 제안하였다. 본 연구에서는 주거 밀집 지역을 연구지역으로 선정하였으며, KOMPSAT-3와 무인항공기(Unmanned Aerial Vehicle, UAV)의 이종 센서에서 취득된 고해상도 영상을 이용하여 실험 데이터를 생성하였다. 실험 결과, 특징 정보를 이용해 탐지한 건물탐지 결과의 F1-score는 KOMPSAT-3 영상과 무인항공기 영상에서 각각 0.488 그리고 0.696인 반면, 그림자를 고려한 건물탐지 결과의 F1-score는 0.876 그리고 0.867로 그림자를 고려한 건물탐지 기법의 정확도가 더 높은 것을 확인할 수 있었다. 또한, 그림자를 이용한 건물탐지 결과를 바탕으로 제안한 3가지의 건물 변화탐지 제안기법 중 플랫폼의 방위각에 따른 객체 간의 방향을 고려한 방법의 F1-score가 0.891로 가장 높은 정확도를 보이는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.