• Title/Summary/Keyword: Unmanned aerial application

Search Result 190, Processing Time 0.024 seconds

Effects of IR Reduction Design on RCS of UCAV (IR 저감 설계가 무인전투기의 RCS에 미치는 영향)

  • Song, Dong-Geon;Yang, Byeong-Ju;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • The role of UCAV is to carry out various missions in hostile situations such as penetration and attack on the enemy territory. To this end, application of RF stealth technology is indispensable so as not to be caught by enemy radar. The X-47B UCAV with blended wing body configuration is a representative aircraft in which modern RCS reduction schemes are heavily applied. In this study, a model UCAV was first designed based on the X-47B platform and then an extensive RCS analysis was conducted to the model UCAV in the high-frequency regime using the Ray Launching Geometrical Optics (RL-GO) method. In particular, the effects of configuration of UCAV considering IR reduction on RCS were investigated. Finally, the effects of RAM optimized for the air intake of the model UCAV were analyzed.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

UAV Communication System Development by Heterogeneous Mobile Communication System (이종의 이동통신 시스템을 이용한 무인항공기 탑재용 통신시스템 개발)

  • Ko, Kyung-Wan;Park, Pyung-Joo;Lee, Suk-Shin;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.490-502
    • /
    • 2009
  • This monograph details the development of communication UAV(Unmanned Aerial Vehicle) in combined modems of HSDPA with Wibro by using two kinds of mobile network. In order to apply mobile network which is currently serviced to a UAV, it is necessary to solve some problems : insurance of wide coverage based on the range of the UAV, electrical transmission of extensive image data for UAV for watching and scouting, security of stable communication environment is related to network traffic. This paper proposes those difficulties to be solved by application of correspondence system to mobile network. The proposed system consists of two parts; HSDPA part and Wibro part. The use of those can not only secure wide range of coverage but also transmit huge data. Furthermore, through utilizing them along with two kinds of mobile network, stable communication environment can be built up. All of these effects can be confirmed by experimentations and simulations.

  • PDF

A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network (신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구)

  • Kong Chang-Duk;Ki Ja-Young;Lee Chang-Ho;Lee Seoung-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.213-217
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). For teaming the NN, a BPN with one hidden, one input and one output layer was used. The input layer had seven neurons of variations of measurement parameters such as SHP, MF, P2, T2, P4, T4 and T5, and the output layer used 6 neurons of degradation ratios of flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network teaming and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics algorithm could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

GNSS Techniques for Enhancing Flight Safety of UAS (무인항공기 안전성 강화를 위한 위성항법시스템 적용 방안)

  • Park, Je-hong
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.58-65
    • /
    • 2017
  • Global navigation satellite system (GNSS) has a weakness of signal integrity caused by broadcasting type data transmitting direct to user from navigation satellite. Loss of GNSS signal integrity can make a catastrophic event in the operation of unmanned aerial system (UAS) because position decision is only depended on GNSS. So it is required to apply alternative method to reduce a risk and to guarantee a GNSS signal integrity for UAS operation. This paper addressed the reason of loosing GNSS signal integrity, the effectiveness of signal jamming/spoofing and GNSS application trend for UAS. Also suggested the flight safety enhancing method in case of GNSS signal jamming for UAS as technical and political approaches.

A Study on Fault Detection of Main Component for Smart UAV Propulsion system (스마트 무인기 추진시스템의 주요 구성품 손상 탐지에 관한 연구)

  • Kong, Chang-Duk;Kim, Ju-Il;Ki, Ja-Young;Kho, Seong-Hee;Choe, In-Soo;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.281-284
    • /
    • 2006
  • An intelligent performance diagnostic program using the Neural Network was proposed for PW206C turboshaft engine. It was selected as a power plant for the tilt rotor type Smart UAV (Unmanned Aerial Vehicle) which has been developed by KARI (Korea Aerospace Research Institute). The measurement parameters of Smart UAV propulsion system are gas generator rotational speed, power turbine rotational speed, exhaust gas temperature and torque. But two measurement such as compressor exit pressure and compressor turbine exit temperature were added because they were difficult each component diagnostics using the default measurement parameter. The performance parameters for the estimate of component performance degradation degree are flow capacities and efficiencies for compressor, compressor turbine and power turbine. Database for network learning and test was constructed using a gas turbine performance simulation program. From application results for diagnostics of the PW206C turboshaft engine using the learned networks, it was confirmed that the proposed diagnostics could detect well the single fault types such as compressor fouling and compressor turbine erosion.

  • PDF

Implementation of Intra-Partition Communication in Layered ARINC 653 for Drone Flight-Control Program (드론 비행제어 프로그램을 위한 계층적 ARINC 653의 파티션 내 통신 구현)

  • Park, Joo-Kwang;Kim, Jooho;Jo, Hyun-Chul;Jin, Hyun-Wook
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.649-657
    • /
    • 2017
  • As the type and purpose of drones become diverse and the number of additional functions is increasing, the role of the corresponding software has increased. Through partitioning and an efficient solving of SWaP(size, weight and power) problems, ARINC 653 can provide reliable software reuse and consolidation regarding avionic systems. ARINC 653 can be more effectively applied to drones, a small unmanned aerial vehicle, in addition to its application with large-scale aircraft. In this paper, to exploit ARINC 653 for a drone flight-control program, an intra-partition communication system is implemented through an extension of the layered ARINC 653 and applied to a real drone system. The experiment results show that the overheads of the intra-partition communication are low, while the resources that are assigned to the drone flight-control program are guaranteed through the partitioning.

Accuracy of Drone Based Stereophotogrammetry in Underground Environments (지하 환경에서의 드론 기반 입체사진측량기법의 정확도 분석)

  • Kim, Jineon;Kang, Il-Seok;Lee, Yong-Ki;Choi, Ji-won;Song, Jae-Joon
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.1-14
    • /
    • 2020
  • Stereophotogrammetry can be used for accurate and fast investigation of over-break or under-break which may form during the blasting of underground space. When integrated with small unmanned aerial vehicles(UAVs) or drones, stereophotogrammetry can be performed much more efficiently. However, since previous research are mostly focused on surface environments, underground applications of drone-based stereophotogrammetry are limited and rare. In order to expand the use of drone-based stereophotogrammetry in underground environments, this study investigated a rock surface of a underground mine through drone-based stereophotogrammetry. The accuracy of the investigation was evaluated and analyzed, which proved the method to be accurate in underground environments. Also, recommendations were proposed for the image acquisition and matching conditions for accurate and efficient application of drone-based stereophotogrammetry in underground environments.

Performance Analysis of Position Based Routing Protocol for UAV Networks (UAV 네트워크 환경에 적합한 위치기반 라우팅 프로토콜의 성능 분석)

  • Park, Young-Soo;Jung, Jae-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2C
    • /
    • pp.188-195
    • /
    • 2012
  • Many systems are developing for the realization of NCW(Network Centric Warfare). UAV(Unmanned Aerial Vehicle) Network is attracting attention in a lot of military applications. In general, UAVs have the potential to create an ad-hoc network and greatly reduce the hops from source to destination. However, UAV networks exhibit unique properties such as high mobility, high data rate, and real time service. The routing protocols are required to design the multi-hop routing protocols that can dynamically adapt to the requirements of UAV network. In this paper we analyse Geographic Routing Protocol is based on geographical distance between source and destination for efficient and reliable transmission. Geographic Routing Protocol is evaluated in video service scenarios with TDMA model in our simulation. The simulation results show that the performance of Geographic Routing Protocol is better than the MANET Routing Protocol in terms of packet received ratio, end to end delay, and routing traffic sent.

System Improvement for Application and Diffusion of Earthwork Surveying Automation Technology (토공측량 자동화 기술의 적용 활성화를 위한 제도개선 방안)

  • Lee, Du-Heon;Park, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.303-313
    • /
    • 2018
  • The purpose of this study is digitalization of earthwork such as development of 3D terrain analysis platform using latest technologies including unmanned aerial vehicle and terrestrial laser scanner to ultimately achieve earthwork automation. It is necessary to develop related element technologies and to establish regulations so that it can be applied to the domestic construction projects. As a result of pilot project about the earthwork surveying automation technology, it was confirmed that information such as terrain coordinates, soil, boring, and excavation volume is acquired smoothly. In this paper, we investigate related regulations and manuals in Japan and propose the improvement plan of domestic regulation. We plan to study regulations from early to final construction stage, combine with the 'regulation for public surveying', and improve the regulations in detail.