• Title/Summary/Keyword: Unmanned Ground System

Search Result 263, Processing Time 0.03 seconds

The legal responsibility of the unmanned aircraft operators and insurance (무인항공기 운영자의 법적책임과 보험)

  • Kim, Jong-Bok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.2
    • /
    • pp.367-418
    • /
    • 2018
  • Just as safety is the most important thing in aviation, safety is the most important in the operation of unmanned aircraft (RPA), and safety operation is the most important in the legal responsibility of the operator of the unmanned aircraft. In this thesis, the legal responsibility of the operator of the unmanned aircraft, focusing on the responsibility of the operator of the unmanned aircraft, was discussed in depth with the issue of insurance, which compensates for damages in the event of an accident First of all, the legal responsibility of the operator of the unmanned aircraft was reviewed for the most basic : definition, scope and qualification of the operator of the unmanned aircraft, and the liability of the operator of the Convention On International Civil Aviation, the ICAO Annex, the RPAS Manual, the Rome Convention, other major international treaties and Domestic law such as the Aviation Safety Act. The ICAO requires that unmanned aircraft be operated in such a manner as to minimize hazards to persons, property or other aircraft as a major principle of the operation of unmanned aircraft, which is ultimately equivalent to manned aircraft Considering that most accidents involving unmanned aircrafts fall to the ground, causing damage to third parties' lives or property, this thesis focused on the responsibility of operators under the international treaty, and the responsibility of third parties for air transport by Domestic Commercial Act, as well as the liability for compensation. In relation to the Rome Convention, the Rome Convention 1952 detailed the responsibilities of the operator. Although it has yet to come into effect regarding liability, some EU countries are following the limit of responsibility under the Rome Convention 2009. Korea has yet to sign any Rome Convention, but Commercial Act Part VI Carriage by Air is modeled on the Rome Convention 1978 in terms of compensation. This thesis also looked at security-related responsibilities and the responsibility for privacy infringement. which are most problematic due to the legal responsibilities of operating unmanned aircraft. Concerning insurance, this thesis looked at the trends of mandatory aviation insurance coverage around the world and the corresponding regulatory status of major countries to see the applicability of unmanned aircraft. It also looked at the current clauses of the Domestic Aviation Business Act that make insurance mandatory, and the ultra-light flight equipment insurance policy and problems. In sum, the operator of an unmanned aircraft will be legally responsible for operating the unmanned aircraft safely so that it does not pose a risk to people, property or other aircraft, and there will be adequate compensation in the event of an accident, and legal systems such as insurance systems should be prepared to do so.

A Study on Mine Detection System with Automatic Height Control (높이 자동제어가 가능한 차량 장착형 지뢰탐지장치에 대한 연구)

  • Kang, Sin Cheon;Chung, Hoe Young;Jung, Dae Yon;Sung, Gi Yeul;Kim, Do Jong;Kim, Ji Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.558-565
    • /
    • 2017
  • The vehicle-mounted mine detection system with large detection sensor modules can search wide areas with a fast detection speed. To mount the heavy mine detectors on a manned or unmanned vehicle, it is necessary to design the detector driving mechanism and control system based on the considerations driven from the characteristic analysis and the operation requirements of the detection system. Furthermore, while operating the mine detector mounted on a mobile vehicle, it is significant to keep the height from the ground to sensors within a certain distance in order to get a qualified detection performance. As the mine detection sensor, we used ground penetrating radar widely used to geotechnical exploration, mine detection and etc. In this paper, we introduce a driving mechanism through analyzing the characteristics of the vehicle-mounted mine detection system. We also suggest a method to automatically control the distance between the ground and GPR by utilizing the GPR output values, used to detect mines at the same time.

A study on the VHDL Implementation of a RS coder for a FTS transceiver

  • Kim Woo Shik;Lim Jun Seok;Yoon Steve
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.463-467
    • /
    • 2004
  • A FTS (Flight Termination System) is a system that resides in a flying object such as a rocket, unmanned airplane, helicopter, missile, etc., receives commands from ground stations or detects coordinates automatically, and accomplishes a destruction command in case the object does not follow the presumed orbit. In this paper, we address the implementation of a communication modem for the FTS modem. We present general theory, simulation results using Matlab, and several results on the implementation using VHDL.

  • PDF

Attack Datasets for ROS Intrusion Detection Systems (ROS 침입 탐지 시스템을 위한 공격 데이터셋 구축)

  • Hyunghoon Kim;Seungmin Lee;Jaewoong Heo;Hyo Jin Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.681-691
    • /
    • 2024
  • In recent decades, research and development in the field of industrial robotics, such as an unmanned ground vehicle (UGV) and an unmanned aerial vehicle (UAV), has been significant progress. In these advancements, it is important to use middleware, which facilitates communication and data management between different applications, and various industrial communication middleware protocols have been released. The robot operating system (ROS) is the most widely adopted as the main platform for robot system development among the communication middleware protocols. However, the ROS is known to be vulnerable to various cyber attacks, such as eavesdropping on communications and injecting malicious messages, because it was initially designed without security considerations. In response, numerous studies have proposed countermeasures to ROS vulnerabilities. In particular, some work has been proposed on generating ROS datasets for intrusion detection systems (IDS), but there is a lack of research in this area. In this paper, in order to contribute to improving the performance of ROS IDSs, we propose a new type of attack scenario that can occur in the ROS and build ROS attack datasets collected from a real robot system and make it available as an open dataset.

Development Trends of Small Unmanned Ground Vehicles in Technology Leading Countries (기술 선도국의 소형 무인 지상 차량 개발 동향)

  • Ryu, Jun-Yeol;Kim, Soo-Chan;Kim, Tae-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.214-220
    • /
    • 2021
  • SUGVs (Small Unmanned Ground Vehicles) are being used to conduct dangerous missions, such as EOD (explosive ordinance disposal), counter-terrorism operations, fire extinguishing and fire-fighting reconnaissance, reconnaissance of disaster areas, and surveillance of contact areas. Technology leading countries, the United States, United Kingdom, France, Germany, and Israel, have developed and operated various SUGVs for use in the military and civilian fields. The developed system was upgraded further based on additional requirements associated with data collected during the actual operation. The development trends of technology leading countries are an important indicator for the future development of SUGVs. In this study, the development trends and missions of SUGVs operating in the technology leading countries were analyzed. Based on the development trends of SUGVs in these countries, this paper discusses the features and design characteristics needed for the development of SUGVs in future military and civilian domains.

Manhole Cover Detection from Natural Scene Based on Imaging Environment Perception

  • Liu, Haoting;Yan, Beibei;Wang, Wei;Li, Xin;Guo, Zhenhui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5095-5111
    • /
    • 2019
  • A multi-rotor Unmanned Aerial Vehicle (UAV) system is developed to solve the manhole cover detection problem for the infrastructure maintenance in the suburbs of big city. The visible light sensor is employed to collect the ground image data and a series of image processing and machine learning methods are used to detect the manhole cover. First, the image enhancement technique is employed to improve the imaging effect of visible light camera. An imaging environment perception method is used to increase the computation robustness: the blind Image Quality Evaluation Metrics (IQEMs) are used to percept the imaging environment and select the images which have a high imaging definition for the following computation. Because of its excellent processing effect the adaptive Multiple Scale Retinex (MSR) is used to enhance the imaging quality. Second, the Single Shot multi-box Detector (SSD) method is utilized to identify the manhole cover for its stable processing effect. Third, the spatial coordinate of manhole cover is also estimated from the ground image. The practical applications have verified the outdoor environment adaptability of proposed algorithm and the target detection correctness of proposed system. The detection accuracy can reach 99% and the positioning accuracy is about 0.7 meters.

Yield Prediction of Chinese Cabbage (Brassicaceae) Using Broadband Multispectral Imagery Mounted Unmanned Aerial System in the Air and Narrowband Hyperspectral Imagery on the Ground

  • Kang, Ye Seong;Ryu, Chan Seok;Kim, Seong Heon;Jun, Sae Rom;Jang, Si Hyeong;Park, Jun Woo;Sarkar, Tapash Kumar;Song, Hye young
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.138-147
    • /
    • 2018
  • Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage (Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its precision and accuracy was unsuitable for predicting the yield as its $R^2$ is 0.697, root-mean-square error (RMSE) is 1170 g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for $R^2$, 616 g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the PLSR model of 0.896 for $R^2$, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be predicted using a UAV.

On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone) (고정익 무인항공기(드론)를 이용한 노천광산 지형측량 기술의 현장실증)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.527-533
    • /
    • 2015
  • This study performed an on-site demonstration of the topographic surveying technique at a large-scale open-pit limestone mine in Korea using a fixed-wing unmanned aerial vehicle (UAV, Drone, SenseFly eBee). 288 sheets of aerial photos were taken by an automatic flight for 30 minutes under conditions of 300 m altitude and 12 m/s speed. Except for 37 aerial photos in which no keypoint was detected, 251 aerial photos were utilized for data processing including correction and matching, then an orthomosaic image and digital surface model with 7 cm grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 4 ground control points measured by differential global positioning system and those determined by fixed-wing UAV photogrammetry revealed that the root mean squared errors were around 15 cm. Because the fixed-wing UAV has relatively longer flight time and larger coverage area than rotary-wing UAVs, it can be effectively utilized in large-scale open-pit mines as a topographic surveying tool.

Analysis of Efficient Health Data Transmission Methods based on the Fusion of WBAN and FANET (WBAN과 FANET 융합 기반의 효율적인 신체 데이터 전송 방법 분석)

  • Ha, Il-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.386-394
    • /
    • 2017
  • FANET is an ad hoc network formed among the unmanned aircraft in the three-dimensional space for data transfer. Most of the research on FANET application has focused on the use of the camera sensor mounted on the unmanned aircraft to collect data from the ground, and process and delivery of the data for a specific purpose. However, the research on the fusion of WBAN and FANET that collects the data of the human body and passes through the FANET has not been studied much until now. Therefore, in this study, we study the data transmission system that collects the human body data of people working in the areas that are vulnerable to communication difficulties and passes the collected data through the FANET. In particular we analyze the possible methods to transfer the emergency data of the body in the fusion network of WBAN and FANET and provide a data transfer model that can be transmitted most efficiently.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.