• 제목/요약/키워드: Unmanned Aero Vehicle

검색결과 12건 처리시간 0.021초

무인항공기 체계의 통합검증을 위한 무인항공기 체계통합실험실(UAV SIL) 개발 (Development of Unmanned Aerial Vehicle System Integration Laboratory(UAV SIL) for the Integrated Verification)

  • 심재익;우희채;김상진;정상준
    • 한국군사과학기술학회지
    • /
    • 제27권1호
    • /
    • pp.70-79
    • /
    • 2024
  • This paper describes the results of the development of the the unmanned aerial vehicle system integration laboratory(UAV SIL) for the integrated verification. This UAV SIL is designed to test the robustness of the UAV system including the operational logics and the flight control system behaviors under many abnormal and emergency conditions such as data-link losses, airborne subsystem failures, engine shut down conditions, and ground control station faults. This paper presents how to build the UAV SIL and how to verify the in-development UAV system through the UAV SIL.

무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가 (Evaluation of Vibration Control Performance of Camera Mount System for UAV)

  • 오종석;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.407-412
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle (UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

  • PDF

고무와 압전작동기를 이용한 무인항공기 EO/IR 센서 마운트의 설계 및 능동 진동 제어 (Design and Active Vibration Control of UAV EO/IR Sensor Mount Using Rubber Element and Piezoelectric Actuator)

  • 박동현;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.743-748
    • /
    • 2008
  • This paper presents an inertia type of piezostack based active mount for unmanned aero vehicle (UAV) camera system. After identifying the stiffness and damping properties of the rubber element and piezostack a mechanical model of the active mount system is established. The governing equation of mount is them derived and expressed in a state space farm. Subsequently, a sliding mode controller which is robust to uncertain parameters is designed in order to reduce the vibration imposed according to the military specification associated with UAV camera mount system operation. Control performances such as acceleration and transmitted force are evaluated through both computer simulation and experimental implementation.

  • PDF

무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가 (Evaluation of Vibration Control Performance of Camera Mount System for UAV)

  • 오종석;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1315-1321
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle(UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

압전작동기를 이용한 무인항공기 EO/IR 센서 마운트의 능동 진동 제어 (Active Vibration Control of UAV EO/IR Sensor Mount Using Piezoelectric Actuator)

  • 박동현;최승복
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1278-1285
    • /
    • 2008
  • This paper presents an inertia type of piezostack based active mount fur unmanned aero vehicle (UAV) camera system. After identifying the stiffness and damping properties of the rubber element and piezostack a mechanical model of the active mount system is established. The governing equation of mount is then derived and expressed in a state space form. Subsequently, a sliding mode controller which is robust to uncertain parameters is designed in order to reduce the vibration imposed according to the military specification associated with UAV camera mount system operation. Control performances such as acceleration and transmitted force are evaluated through both computer simulation and experimental implementation.

HILS를 통한 무인항공기 카메라 지지 능동 마운트 시스템의 진동제어 성능 평가 (Performance Evaluation on an Active Camera Mount System for UAV via Hardware-in-the-loop-simulation)

  • 오종석;최승복;조한준;이철희;조명우
    • 한국소음진동공학회논문집
    • /
    • 제20권8호
    • /
    • pp.767-773
    • /
    • 2010
  • In the present work, vibration control performance of piezoactuator-based active mount system for unmanned aero vehicle(UAV) equipment is evaluated via hardware in the loop simulation(HILS). At first, the vibration level of UAV is measured and from this vibration data, the proper piezostack actuator is selected. Then, the dynamic model of active mount system including four active mounts and UAV camera equipment is derived. In order to evaluate vibration control performance, the HILS system is constructed. The proposed mount is prepared as hardware part and the other mounts are considered in software part. A sliding mode controller is designed and implemented to the HILS system. Effective vibration control results are presented in both time and frequency domains.

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • 제9권1호
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

Active Flow Control on a UCAV Planform Using Synthetic Jets

  • Lee, Junhee;Lee, Byunghyun;Kim, Minhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권3호
    • /
    • pp.315-323
    • /
    • 2016
  • This paper deals with experimental investigation of active flow control via synthetic jets using an unmanned combat air vehicle (UCAV) planform. Fourteen arrays of synthetic jets, mounted along both leading edges, were fully or partially activated to increase aerodynamic efficiency and reduce pitch-up moment. The measurements were carried out using a six-component external balance, a pressure scanner, and tuft flow visualization. It was observed that aerodynamic efficiency (L/D) and pitching moment were clearly affected by the location of jets. In particular, inboard and outboard actuation could effectively increase L/D. Moreover, inboard actuation showed a reduction in the pitch-up, even more than that generated by the full actuation. These results suggest that inboard actuation not only effectively increases L/D but also reduces the pitch-up using only a few actuators.

Implementation of Air Pollutant Monitoring System using UAV with Automatic Navigation Flight

  • Shin, Sang-Hoon;Park, Myeong-Chul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.77-84
    • /
    • 2022
  • 본 논문에서는 자동항법 비행이 가능한 무인기를 활용하여 미세먼지 등의 대기 오염물질을 모니터링 하는 시스템을 제안한다. 기존 대기 질 관리 시스템은 고정된 센서 박스를 통한 관제나 조종장치를 이용한 드론의 측정 센서를 통하여 정보를 취득하는 방식을 사용했다. 이는 한정된 공간과 모니터링을 위한 별도의 데이터 수집 및 전송들의 추가적인 절차가 진행되어야 하는 단점을 가진다. 본 논문에서 이러한 문제점을 극복하기 위하여 비행정보 지정을 통한 자율항법 비행이 가능한 무인기에 위치 정보를 위한 GPS 모듈과 미세먼지 측정을 위한 PMS7003 모듈을 내장하고 수집된 정보는 SD 모듈에 저장하고 비행 종료 후 전송버튼을 통해 블루투스로 연결된 스마트폰 앱을 통하여 원격 데이터베이스에 저장되는 원스톱 구조의 시스템을 구성한다. 또한, 실시간 모니터링을 위한 HTML5 기반의 웹 모니터링 페이지를 구성하여 관심 사용자에게 제공된다. 본 연구의 결과는 무인 비행체를 통한 환경 모니터링 시스템에 활용될 수 있으며, 향후 아황산가스 및 이산화탄소 등의 다양한 오염물질 측정 센서를 추가하여 토털 환경 관제 시스템으로 발전시키고자 한다.

능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구 (A study on the Power Characteristics of Hybrid Power System by Active Power Management)

  • 이보화;박부민
    • 한국항공우주학회지
    • /
    • 제44권9호
    • /
    • pp.833-841
    • /
    • 2016
  • 본 연구에서 대상으로 삼은 순항 200 W급 전기동력무인기는 태양전지, 연료전지, 배터리를 동시에 주 전력원으로 사용한다. 각 전력원별 출력은 능동전력제어 방식에 의해 연료전지의 최대 출력을 제한한 상태에서 배터리의 적정용량을 유지하도록 각 전력원별 전력제어를 수행하게 된다. 능동전력제어 방식에 의한 각 전력원별 출력변동은 지상통합시험을 통해 확인하였다. 또한 연료전지의 최대출력제한이 전체 시스템의 출력변동에 미치는 영향을 실험적으로 확인하였으며, 연료전지의 최대출력값은 연료전지 시스템용 6직렬 소형 배터리의 과방전을 방지하기 위해서는 150W가 적절함을 확인하였다.