• Title/Summary/Keyword: Unmanned Aerial vehicle

Search Result 1,013, Processing Time 0.027 seconds

Development of Flight Control Application for Unmanned Aerial Vehicle Employing Linux OS (리눅스 기반 무인항공기 제어 애플리케이션 개발)

  • Kim Myoung-Hyun;Moon Seungbin;Hong Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2006
  • This paper describes UAV (Unmanned Aerial Vehicle) control system which employs PC104 modules. It is controlled by application program based on Linux OS. This application consists of both Linux device driver in kernel-space and user application in user-space. In order to get data required in the unmanned flight, external devices are connected to PC104 modules. We explain how Linux device drivers deal with data transmitted by external devices and we account for how the user application controls UAV on the basis of data processed in the device driver as well. Furthermore we look into the role of GCS (Ground Control Station) which is to monitor the state of UAV.

Evaluation of Geospatial Information Construction Characteristics and Usability According to Type and Sensor of Unmanned Aerial Vehicle (무인항공기 종류 및 센서에 따른 공간정보 구축의 활용성 평가)

  • Chang, Si Hoon;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.555-562
    • /
    • 2021
  • Recently, in the field of geospatial information construction, unmanned aerial vehicles have been increasingly used because they enable rapid data acquisition and utilization. In this study, photogrammetry was performed using fixed-wing, rotary-wing, and VTOL (Vertical Take-Off and Landing) unmanned aerial vehicles, and geospatial information was constructed using two types of unmanned aerial vehicle LiDAR (Light Detection And Ranging) sensors. In addition, the accuracy was evaluated to present the utility of spatial information constructed through unmanned aerial photogrammetry and LiDAR. As a result of the accuracy evaluation, the orthographic image constructed through unmanned aerial photogrammetry showed accuracy within 2 cm. Considering that the GSD (Ground Sample Distance) of the constructed orthographic image is about 2 cm, the accuracy of the unmanned aerial photogrammetry results is judged to be within the GSD. The spatial information constructed through the unmanned aerial vehicle LiDAR showed accuracy within 6 cm in the height direction, and data on the ground was obtained in the vegetation area. DEM (Digital Elevation Model) using LiDAR data will be able to be used in various ways, such as construction work, urban planning, disaster prevention, and topographic analysis.

A Study on Airworthiness Certification Standards for Military Small Rotary-Wing Unmanned Aerial Vehicles (군용 소형 회전익무인기 감항인증기준에 대한 연구)

  • Yang, Junmo;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2021
  • In modern society, the use of small rotary-wing unmanned aerial vehicles such as drones is increasing. As the military considers tactics using drones, demand for drones is increasing. However, there is still no airworthiness certification standard for drones for safety. In this paper, we proposed airworthiness certification standards for small rotorcraft unmanned aerial vehicles based on CS-LURS in Europe and STANG-4703, 4738 (draft) of the North Atlantic Treaty Organization. In addition, airworthiness certification standards have been strengthened through the case of unmanned aerial vehicle accidents in operation by the Korean military. The airworthiness certification standards for small rotary-wing unmanned aerial vehicles will be supplemented through a demonstration project.

Development of Portable Ground Control System for Operation of Unmanned Aerial Vehicle (무인항공기 운용을 위한 이동형 지상제어 시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.127-133
    • /
    • 2004
  • This paper described development of the portable ground control system(PGCS) for unmanned aerial vehicle. In the design of GCS, it upload mission planning that aircraft has to perform and has to receive position, attitude, state, navigation information all about the aircraft. Aircraft states and trajectory are displayed using this system on line. The PGCS is composed of commercial notebook computer, RF modem for communication between aircraft and PGCS, input/output board, remote control receiver, switches and lamps. Performance of this system is verified by flight test of small unmanned aerial vehicle.

Technology Keyword Network and Cognitive Map Analysis: to prospect promising technology of UAV(Unmanned Aerial Vehicle) airframe industry (기술 키워드 네트워크와 인지지도 분석을 통한 무인항공기 비행체산업의 유망기술 도출 연구)

  • Joo, Seong-Hyeon;Ha, Sung-Ho;Park, Sang-Hyeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.55-72
    • /
    • 2016
  • This study aims at providing a methodology for retaining international technology competitiveness, marketable industry, and sustainable promising technology in a field of new growth engine industry such as national unmanned aerial vehicle industry. We draw a result by analysing with tools such as KrKwic, Excel, NetMiner, presenting methods of a Social Network Analysis, sub-group analysis, and cognitive map analysis based on patent data in a field of unmanned aerial vehicle industry. As a result, some future promising technologies are prospected as what worths concentrated investment, such as 'pilot control tech', 'identification of friend or foe tech'.

Path Planning of the Low Altitude Flight Unmanned Aerial Vehicle for the Neutralization of the Enemy Firepower (대화력전 임무수행을 위한 저고도 비행 무인공격기의 경로계획)

  • Yang, Kwang-Jin;Kim, Si-Tai;Jung, Dae-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.424-434
    • /
    • 2012
  • This paper presents a path planning algorithm of the unmanned aerial vehicle for the neutralization of the enemy firepower. The long range firepower of the ememy is usually located at the rear side of the mountain which is difficult to bomb. The path planner not only consider the differential constraints of the Unmanned Aerial Vehicle (UAV) but also consider the final approaching angle constraint. This problem is easily solved by incorporating the analytical upper bounded continuous curvature path smoothing algorithm into the Rapidly Exploring Random Tree (RRT) planner. The proposed algorithm can build a feasible path satisfying the kinematic constraints of the UAV on the fly. In addition, the curvatures of the path are continuous over the whole path. Simulation results show that the proposed algorithm can generate a feasible path of the UAV for the bombing mission regardless of the posture of the tunnel.

Protection Design and Lightning Zone Analysis for Unmanned Aerial Vehicle with Composite Wings (복합재 주익 무인항공기의 낙뢰보호 설계와 피격영역 해석)

  • Hee-chae Woo;Yong-Tae Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.302-312
    • /
    • 2023
  • This paper describes the analysis of lightning strike zoning, the indirect lightning data simulation and the protection design for lightning indirect effects of equipment by lightning strike for unmanned aircraft consisting of composite wings. Through the analysis of lightning strike zoning according to the external shape of unmanned aerial vehicles, the structure areas that should be protected during lightning strike is derived, and the protection requirements of lightning indirect effects for flight critical equipments and equipment that must be operated upon lightning strike was derived. Lightning protection levels according to the location of mounting equipment and surrounding structure materials for each equipment was derived, and the protection design of the unmanned aerial vehicle with composite structures was also proposed from direct effect of lightning. Later, the lightning protection technology will be verified by the ground test of lightning direct and indirect effects.

Analysis of Thrust Characteristics with Propeller Shape for UAV (무인항공기용 프로펠러 형상에 따른 추력특성 해석)

  • Soohyeon Lee;Hwankee Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A study on propllers for unmaned aerial vehicles is conducted using the open softwares. Since the shape of the propeller is closely related to the thurst characteristics of the propulsion system, adopting an appropriate propeller will significantly reflect stable aerodynamic performances. In this study, propellers for unmanned aerial vehicles were modeled by using OpenVSP and Propel for comparison, the thrust characteristics according to the number of blades and the diameter of the propeller were analyzed. In addition, the tendency of thrust characteristics according to various propeller pitch angles was confirmed. Based on the analysis results of this study, the applicability of the propeller shape to the design of the unmanned aerial vehicle was confirmed. It is shownthat the analysis results of this study can be utilized when modeling the propeller shape in research such as a conceptual design of unmanned aerial vehicle. In this case, it should be noted that OpenVSP does not involve the viscous effect of air.

Combined time bound optimization of control, communication, and data processing for FSO-based 6G UAV aerial networks

  • Seo, Seungwoo;Ko, Da-Eun;Chung, Jong-Moon
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.700-711
    • /
    • 2020
  • Because of the rapid increase of mobile traffic, flexible broadband supportive unmanned aerial vehicle (UAV)-based 6G mobile networks using free space optical (FSO) links have been recently proposed. Considering the advancements made in UAVs, big data processing, and artificial intelligence precision control technologies, the formation of an additional wireless network based on UAV aerial platforms to assist the existing fixed base stations of the mobile radio access network is considered a highly viable option in the near future. In this paper, a combined time bound optimization scheme is proposed that can adaptively satisfy the control and communication time constraints as well as the processing time constraints in FSO-based 6G UAV aerial networks. The proposed scheme controls the relation between the number of data flows, input data rate, number of worker nodes considering the time bounds, and the errors that occur during communication and data processing. The simulation results show that the proposed scheme is very effective in satisfying the time constraints for UAV control and radio access network services, even when errors in communication and data processing may occur.

Placement Optimization of Airborne Line-Of-Sight Datalink Directional Antenna in UAV (무인항공기 탑재 가시선 데이터링크 방향성 안테나 위치 최적화)

  • Kim, Jihoon;Choi, Jaewon;Chung, Eulho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.18-24
    • /
    • 2014
  • In this paper, the optimum placement of airborne line-of-sight (LOS) datalink directional antenna to minimize the datalink loss within the operation range of unmanned aerial vehicle (UAV) is analyzed by using the electromagnetic (EM) simulation. In quick banking of UAV, the datalink loss is occurred due to the electromagnetic distortion and transmission loss by the fuselage blockage. In general, the banking angle of UAV is limited to prevent the datalink loss. However, in this case, there is the problem that the mission performance ability is largely limited by the banking radius increase. To solve this problem, the optimum placement to mount the airborne LOS datalink 1-axis directional antenna on both the top and bottom surfaces of fuselage is analyzed by using EM simulation. The 1-axis antenna with large vertical beamwidth is used because the banking angle of UAV is dependent on the vertical beamwidth of antenna. Also, there is the benefit to reduce largely the weight because the 1-axis antenna can be mounted instead of the 2-axis one.