• 제목/요약/키워드: Unmanned Aerial Vehicles (UAV's)

검색결과 72건 처리시간 0.026초

Concepts and applications for integrating Unmanned Aerial Vehicles (UAV's) in disaster management

  • Naser, M.Z.;Kodur, V.K.
    • Advances in Computational Design
    • /
    • 제5권1호
    • /
    • pp.91-109
    • /
    • 2020
  • Over the past few decades, the impact of natural, manmade and natech (natural hazard triggering technological disasters) disasters has been devastating, affecting over 4.4 billion people. In spite of recent technological advances, the increasing frequency and intensity of natural disasters and the escalation of manmade threats is presenting a number of challenges that warrant immediate attention. This paper explores the integration of drones or Unmanned Aerial Vehicles (UAV's) into infrastructure monitoring and post-disaster assessment. Through reviewing some of the recent disasters, effectiveness of utilizing UAV's in different stages of disaster life cycle is demonstrated and needed steps for successful integration of UAV's in infrastructure monitoring, hazard mitigation and post-incident assessment applications are discussed. In addition, some of the challenges associated with implementing UAV's in disaster monitoring, together with research needs to overcome associated knowledge gaps, is presented.

5G 기반 무인 비행체 운용 표준화 동향 (Standardization Trends for Operation of Unmanned Aerial Vehicles based on 5G)

  • 이현;배정숙;방승재;이희수
    • 전자통신동향분석
    • /
    • 제36권4호
    • /
    • pp.13-22
    • /
    • 2021
  • Among the activities of 3GPP for operating 5G-based unmanned aerial vehicles, we introduce several use cases of UAVs in 5G mobile communication such as radio access node onboard UAV, simultaneous support data transmission for UAVs and eMBB users, autonomous UAVs controlled by AI, isolated deployment of radio access through UAV, and separation of UAV service area. From this, we further summarize 5G mobile communication requirements for UAVs, including definition and operational criteria of UAS, UAS remote identification requirements, UAS usage requirements, and performance requirements. Finally, regarding 5G mobile communication-based UAS connectivity, identification and tracking support, we discuss the 3GPP UAV architecture, seven major problems, the proposed solutions to each problem, and propose the results for future specification work.

The Full-Duplex Device-to-Device Security Communication Under the Coverage of Unmanned Aerial Vehicle

  • Zeng, Qian;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1941-1960
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs), acting as mobile base stations (BSs), can be deployed in the typical fifth-generation mobile communications (5G) scenarios for the purpose of substantially enhancing the radio coverage. Meanwhile, UAV aided underlay device-to-device (D2D) communication mode can be activated for further improving the capacity of the 5G networks. However, this UAV aided D2D communication system is more vulnerable to eavesdropping attacks, resulting in security risks. In this paper, the D2D receivers work in full-duplex (FD) mode, which improves the security of the network by enabling these legitimate users to receive their useful information and transmit jamming signal to the eavesdropper simultaneously (with the same frequency band). The security communication under the UAV coverage is evaluated, showing that the system's (security) capacity can be substantially improved by taking advantage of the flexible radio coverage of UAVs. Furthermore, the closed-form expressions for the coverage probabilities are derived, showing that the cellular users (CUs)' secure coverage probability in downlink transmission is mainly impacted by the following three factors: its communication area, the relative position with UAV, and its eavesdroppers. In addition, it is observed that the D2D users or DUs' secure coverage probability is relevant to state of the UAV. The system's secure capacity can be substantially improved by adaptively changing the UAV's position as well as coverage.

Integrated Navigation and Sense & Avoid Systems for Micro Aerial Vehicles

  • Vorsmann, P.;Winkler, S.;Park, J.B.
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.145-150
    • /
    • 2006
  • The paper deals with integrated navigation and sense & avoid systems for small unmanned aerial vehicles (UAV). First an introduction to the current UAV activities of the institute is given. It is followed by an overview about the integrated navigation system developed for small UAVs. The system is based on a tightly-coupled GPS/INS architecture. But instead of using delta-ranges, time-differenced carrier phases are used to aid the INS. Finally, results from navigation filter validation in flight tests are presented. After that an overview about sense and avoid strategies for application in small unmanned aircraft is given. From this a guideline for developing such a system for the institute's UAVs is presented.

  • PDF

무인항공기 이착륙을 위한 수평 유지 이동 플랫폼 (Study of a Leveling Mobile Platform for Take-off and Landing of Unmanned Aerial Vehicles)

  • 이상웅;곽준영;주백석
    • 한국기계가공학회지
    • /
    • 제19권4호
    • /
    • pp.85-92
    • /
    • 2020
  • Applications for the unmanned aerial vehicle (UAV) have expanded enormously in recent years. Of all its various technologies, the UAV's ability to take off and land in a moving environment is particularly required for military or oceanic usage. In this study, we develop a novel leveling platform that allows the UAV to stably take off and land even on uneven terrains or in moving environments. The leveling platform is composed of an upper pad and a lower mobile base. The upper pad, from which the UAV can take off or land, is designed in the form of a 2 degrees of freedom (DOF) gimbal mechanism that generates the leveling function. The lower mobile base has a four-wheel drive structure that can be operated remotely. We evaluate the developed leveling platform by performing extensive experiments on both the horizontal terrain and the 5-degree ramped terrain, and confirm that the leveling platform successfully maintains the horizontal pose on both terrains. This allows the UAV to stably take off and land in moving environments.

무인항공기의 안전한 도입을 위한 보안기능요구사항 개발 (Development of Security Functional Requirements for Secure-Introduction of Unmanned Aerial Vehicle)

  • 강동우;원동호;이영숙
    • 융합보안논문지
    • /
    • 제19권4호
    • /
    • pp.97-105
    • /
    • 2019
  • 니콜라 테슬라에 의해 항공기의 무선제어 가능성이 제시되면서 출현한 무인항공기는 제 1, 2차 세계대전을 통해 항공력의 급속한 발전과 함께 군사, 방산용으로 사용하게 되었다. 2000년대, 무인항공기의 분야가 촬영, 배송, 통신 등 민간분야까지 확대됨에 따라 여러 서비스와 융합되어 활용되고 있다. 하지만, 최근 무인항공기 시스템에서의 통신이나 무인항공기 자체의 보안 취약점을 이용하여 GPS 스푸핑, 전파 교란 공격 등을 시도하는 보안사고가 발생하고 있다. 이에, 안전한 무인항공기의 도입을 위하여 국내에서는 자체 무인항공기 검증 제도인 감항 인증 제도가 마련되었다. 그러나 감항 인증 제도는 무인항공기의 보안성보다는 시험 비행, 설계 및 물리적 구조의 안전성과 인증하는 쪽에 초점이 맞추어져 있다. 보안성 높은 안전한 무인항공기의 도입을 위해 본 논문에서는 무인항공기 시스템 모델을 제안하고 데이터 흐름도를 작성하였다. 작성한 데이터 흐름도를 바탕으로 무인항공기 시스템에서의 위협을 도출하였고, 도출한 위협을 방지할 수 있는 보안기능요구사항을 개발하였다. 제안한 보안기능요구사항을 통해 향후 무인항공기의 안전한 도입을 위한 앞으로의 평가, 검증 기술의 발전 방향을 제시한다.

Dynamic Modeling and Stabilization Techniques for Tri-Rotor Unmanned Aerial Vehicles

  • Yoo, Dong-Wan;Oh, Hyon-Dong;Won, Dae-Yeon;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.167-174
    • /
    • 2010
  • The design, dynamics, and control allocation of tri-rotor unmanned aerial vehicles (UAVs) are introduced in this paper. A trirotor UAV has three rotor axes that are equidistant from its center of gravity. Two designs of tri-rotor UAV are introduced in this paper. The single tri-rotor UAV has a servo-motor that is installed on one of the three rotors, which enables rapid control of its motion and its various attitude changes-unlike a quad-rotor UAV that depends only on the angular velocities of four rotors for control. The other design is called 'coaxial tri-rotor UAV,' which has two rotors installed on each rotor axis. Since the tri-rotor type of UAV has the yawing problem induced from an unpaired rotor's reaction torque, it is necessary to derive accurate dynamic and design control logic for both single and coaxial tri-rotors. For that reason, a control strategy is proposed for each type of tri-rotor, and nonlinear simulations of the altitude, Euler angle, and angular velocity responses are conducted by using a classical proportional-integral-derivative controller. Simulation results show that the proposed control strategies are appropriate for the control of single and coaxial tri-rotor UAVs.

Noise Prediction of Ducted Fan Unmanned Aerial Vehicles considering Strut Effect in Hover

  • Park, Minjun;Jang, Jisung;Lee, Duckjoo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.144-153
    • /
    • 2017
  • In recent years, unmanned aerial vehicles (UAVs) have been developed and studied for various applications, including drone deliveries, broadcasting, scouting, crop dusting, and firefighting. To enable the wide use of UAVs, their exact aeroacoustic characteristics must be assessed. In this study, a noise prediction method for a ducted fan UAV with complicated geometry was developed. In general, calculation efficiency is increased by simulating a ducted fan UAV without the struts that fix the fuselage to the ducts. However, numerical predictions of noise and aerodynamics differ according to whether struts are present. In terms of aerodynamic performance, the total thrust with and without struts is similar owing to the tendency of the thrust of a blade to offset the drag of the struts. However, in aeroacoustic simulations, the strut effect should be considered in order to predict the UAV's noise because noise from the blades can be changed by the strut effect. Modelling of the strut effect revealed that the dominant tonal noises were closely correlated with the blade passage frequency of the experimental results. Based on the successful detection of noise sources from a ducted fan UAV system, using the proposed noise contribution contour, methods for noise reduction can be suggested by comparing numerical results with measured noise profiles.

다중 UAV-RIS 네트워크를 위한 자원 할당 알고리즘 (Resource Allocation Algorithm for Multiple RIS-Assisted UAV Networks)

  • 박희재;박래혁
    • Journal of Platform Technology
    • /
    • 제11권1호
    • /
    • pp.3-10
    • /
    • 2023
  • 최근 Unmanned Aerial Vehicles (UAVs)은 높은 유동성 및 낮은 하드웨어 비용으로 5G, 6G 무선 통신에서 큰 관심을 받고 있다. 여전히 Blockage와 에너지 문제가 존재하지만 이러한 문제들은 Reconfigurable Intelligent Surface (RIS)를 활용하여 해결할 수 있다. 또한 RIS를 UAV 통신에 이용함으로써 신호를 받지 못하는 사용자에게 신호를 전송하여 Spectral Efficiency를 향상시키며, 에너지 소비를 줄일 수 있다. 현재 대부분의 연구들은 송신 전력과 RIS 위상을 교대로 최적화하여 Power Consumption 최소화 및 데이터 전송 Delay 최소화 등의 목적을 달성하였다. 본 논문에서는 대역폭 최적화를 포함하여 합산 정보 전달율을 최대화하는 알고리즘을 제안한다. 이에 대한 성능평가를 진행하였고, 시뮬레이션을 통해 제안한 알고리즘의 우수성을 보였다.

  • PDF

무인비행체 경로계획 기술 동향 (Survey on Developing Path Planning for Unmanned Aerial Vehicles)

  • 권용선;차지훈
    • 전자통신동향분석
    • /
    • 제39권4호
    • /
    • pp.10-20
    • /
    • 2024
  • Recent advancements in autonomous flight technologies for Unmanned Aerial Vehicles (UAVs) have greatly expanded their applicability for various tasks, including delivery, agriculture, and rescue. This article presents a comprehensive survey of path planning techniques in autonomous navigation and exploration that are tailored for UAVs. The robotics literature has studied path and motion planning, from basic obstacle avoidance to sophisticated algorithms capable of dynamic decision-making in challenging environments. In this article, we introduce popular path and motion planning approaches such as grid-based, sampling-based, and optimization-based planners. We further describe the contributions from the state-of-the-art in exploration planning for UAVs, which have been derived from these well-studied planners. Recent research, including the method we are developing, has improved performance in terms of efficiency and scalability for exploration tasks in challenging environments without human intervention. On the basis of these research and development trends, this article discusses future directions in UAV path planning technologies, illustrating the potential for UAVs to perform complex tasks with increased autonomy and efficiency.