• Title/Summary/Keyword: Unmanned Aerial Vehicle, UAV

Search Result 792, Processing Time 0.025 seconds

Analysis of Fusarium Wilt Based on Normalized Difference Vegetation Index for Radish Field Images from Unmanned Aerial Vehicle (무인기로 촬영한 무 재배지 영상의 정규식생지수(NDVI)를 활용한 병충해 분석 연구)

  • Im, Su-Hyeon;Hassan, Syed Ibrahim;Minh, Dang Lien;Min, Kyung-Bok;Moon, Hyeonjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1353-1357
    • /
    • 2018
  • This paper compares and analyzes Fusarium wilt of radish by using an unmanned aerial vehicle(UAV) with the NDVI-7 camera. The UAV have taken near-infrared images of the Radish field in Gangwon area, which is affected by Fusarium wilt. Based on those images, we analyzed NDVI(Normalized difference vegetation index) and compared conditions of radish by using the Blue value among Regular Vegetation Index in NDVI. First, the radish field is divided into three fields for radish, soil and vinyl. Each field has separate Blue values that are radish 0.4890, soil 0.2959, vinyl -0.0605 respectively. Second, radish condition levels are divided into four stages which are normal, early, middle, and late stage of Fusarium wilt. The average values of each stage are normal 0.5165(100%), early 0.4565(88%), middle 0.3444(66%), and late 0.1772(34%) respectively. This result shows that this NDVI value is validated by measuring conditions of Radish and soil.

Flight control of a small unmanned aerial vehicle using a dynamic compensator (동적 보상기를 이용한 소형 무인항공기 비행 제어)

  • Kim, Heui-Joo;Kim, Jea-Wook;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • In this paper, we design a flight controller using a dynamic compensator for a small unmanned aerial vehicle. The proposed method ensures flight stability during altitude holding and waypoints passing by improving the transient response and steady state error. The control system consists of dual feedback loops with an inner loop and a outer loop. The inner loop has a PD controller to improves the transient response and the outer loop has a dynamic compensator to reduce overshoot in the transient response and improve the steady state error. The performance of the proposed method is evaluated by flight test on a small UAV.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

Detection of Individual Tree Species Using Object-Based Classification Method with Unmanned Aerial Vehicle (UAV) Imagery

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.35 no.3
    • /
    • pp.181-188
    • /
    • 2019
  • This study was performed to construct tree species classification map according to three information types (spectral information, texture information, and spectral and texture information) by altitude (30 m, 60 m, 90 m) using the unmanned aerial vehicle images and the object-based classification method, and to evaluate the concordance rate through field survey data. The object-based, optimal weighted values by altitude were 176 for 30 m images, 111 for 60 m images, and 108 for 90 m images in the case of Scale while 0.4/0.6, 0.5/0.5, in the case of the shape/color and compactness/smoothness respectively regardless of the altitude. The overall accuracy according to the type of information by altitude, the information on spectral and texture information was about 88% in the case of 30 m and the spectral information was about 98% and about 86% in the case of 60 m and 90 m respectively showing the highest rates. The concordance rate with the field survey data per tree species was the highest with about 92% in the case of Pinus densiflora at 30 m, about 100% in the case of Prunus sargentii Rehder tree at 60 m, and about 89% in the case of Robinia pseudoacacia L. at 90 m.

A Study on Operability of Smart UAV in the NAS (스마트무인기의 공역체계 내 운용에 관한 연구)

  • Kim, Do-Hyun;Kim, Joong-Wook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • A UAV is defined as a powered, aerial vehicle that does not carry a human operator, and can fly autonomously or be piloted remotely. UAV operations have increased dramatically during the past several years in both the public and private sectors. The utilization of UAV and the activities of diverse widening, now the challenge was how to operate and integrate UAV safely in the NAS. The purpose of this study is to look around the trend for operability of Smart UAV in the NAS and to provide its implications and the future direction of integrated operating airspace focusing on U.S. where R&D and demand of UAV are the most in the world.

Technology and Korea's Competitiveness Analysis through UAV Patent Analysis (UAV 핵심 기술 특허분석을 통한 기술 및 한국의 경쟁력 분석)

  • Bae, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1868-1875
    • /
    • 2016
  • This paper presents the mega trends of technology and competitiveness analysis results based on patent analysis for establishing effective research and development (R&D) strategy on UAV (Unmanned Aerial Vehicle) in the aerial ICT industry. In order to analyze mega trends of UAV technologies, patent analysis is conducted focusing on published/registered patents of Korea, the U.S., Japan, and Europe. We divided the target technologies into 3 main category levels based on the converging technology of UAV and ICT. The 3,433 patents are collected. Patent indicators such as patent activity (PA), cites per patent (CPP), and major market expansion (MME) are extracted for grasping the technology competitiveness and Korea's competitiveness per sub category levels of UAV. We suggest the R&D strategy of each technology areas based on patent analysis results. We analyzed Korea's technology levels, advanced companies' R&D trends, and patent trends through patent information and expected that this paper would be utilized for establishment of R&D strategy of UAV in the future.

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

The proposal of a cryptographic method for the communication message security of GCS to support safe UAV operations (안정적인 UAV 운영을 위한 GCS의 통신메시지의 암호화 제안)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1353-1358
    • /
    • 2021
  • IoT (Internet of Things) emerges from various technologies such as communications, micro processors and embedded system and so on. The IoT has also been used to UAV (Unmanned Aerial Vehicle) system. In manned aircraft, a pilot and co-pilot should control FCS (Flight Control System) with FBW(Fly By Wire) system for flight operation. In contrast, the flight operation in UAV system is remotely and fully managed by GCS (Ground Control System) almost in real time. To make it possible the communication channel should be necessary between the UAV and the GCS. There are many protocols between two systems. Amongst them, MAVLink (Macro Air Vehicle Link) protocol is representatively used due to its open architecture. MAVLink does not define any securities itself, which results in high vulnerability from external attacks. This paper proposes the method to enhance data security in GCS network by applying cryptographic methods to the MAVLink messages in order to support safe UAV operations.

Status and Characteristics of Unmanned Aerial Vehicle Gas Turbine Engines (무인 항공기 가스터빈 추진기관의 현황 및 특성 연구)

  • Joo, Milee;Choi, Seongman;Jo, Hana
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.61-72
    • /
    • 2020
  • Performance characteristics of propulsion systems applied to UAVs that under development or completed in foreign countries were analyzed. In this study, aircraft mission and performance characteristics of ten UAVs were reviewed and compared with current available civil and military aircraft. Also performance characteristics of UAVs propulsion systems were summarized and engine design parameters were analyzed. Thrust, SFC and design parameters such as pressure ratio and bypass ratio of UAV propulsion system were compared with the current existing civil and military aircraft engines. From this study, the design parameters of the propulsion system applied to the UAV were well understood.

Wind Tunnel Test of an Unmanned Aerial Vehicle (UAV)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Koo, Sa-Mok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.776-783
    • /
    • 2003
  • A low speed wind tunnel test was conducted for full-scale model of an unmanned aerial vehicle (UAV) in Korea Aerospace Research Institute (KARI) Low Speed Wind Tunnel(LSWT). The purpose of the presented paper is to illustrate the general aerodynamic and performance characteristics of the UAV that was designed and fabricated in KARI. Since the testing conditions were represented minor portions of the load-range of the external balance system, the repeatability tests were performed at various model configurations to confirm the reliability of measurements. Variations of drag-polar by adding model components such as tails, landing gear and test boom are shown, and longitudinal and lateral aerodynamic characteristics after changing control surfaces such as aileron, flap, elevator and rudder are also presented. To explore aerodynamic characteristics of an UAV with model components build-up and control surface deflections, lift curve slope, pitching moment variation with lift coefficients and drag-polar are examined. The discussed results might be useful to understand the general aerodynamic characteristics and drag pattern for the given UAV configuration.