• Title/Summary/Keyword: Unmanned Aerial

Search Result 1,362, Processing Time 0.038 seconds

Navigation Performance Analysis Method for Integrated Navigation System of Small Unmanned Aerial Vehicles

  • Oh, Jeonghwan;Won, Daehan;Lee, Dongjin;Kim, Doyoon
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.207-214
    • /
    • 2020
  • Currently, the operation of unmanned aerial vehicle (UAV) is regulated to be able to fly only within the visible range, but in recent years, the needs for operation in the invisible area, in the urban area and at night have increased. In order to operate UAVs in the invisible area, at night, and in the urban area, a flight path for UAVs must be prepared like those operated by manned aircraft, and for this, it is necessary to establish an unmanned aircraft system traffic management (UTM). In order to establish the UTM, information on the minimum separation distance to prevent collisions with UAVs and buildings is required, and accordingly, information on the navigation performance of UAVs is required. In order to analyze the navigation performance of an UAV, total system error (TSE), which is the difference between the planned flight path and the actual location of the UAV, is required. If the collected data are insufficient and classification according to integrity, independence, and direction is not performed, accurate navigation performance is not derived. In this paper, propose a navigation performance analysis method of UAV that is derived TSE using flight data and modeled with normal distribution, analyze performance.

Design of the Autopilot Algorithm for Unmanned Aerial Vehicle (UAV) & Its Flight Test

  • Kyung, Hong-Sung;Hyun, Wee-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.3-141
    • /
    • 2001
  • Since 1990´s, there has been many researches for the development of the Unmanned Aerial Vehicle (UAV). Especially, for the development of digital electronics, the technologies of UAV toward to the miniaturization low-cost, and high reliability. Therefore, recent trends for the development of UAV are focused on the development modern Flight Control System (FCS). In this paper, focusing on the FCS, the development process for Sejong Unmanned Research Vehicle -1 (SURV-1) from design to flight test is presented.

  • PDF

A Study on Efficient Methods of Pesticide Control Using Agricultural Unmanned Aerial Vehicles (농업용 무인항공기를 활용한 농약방제 효율성 방안에 관한 연구)

  • Jeong, Ga-Young;Cho, Yong-Yoon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • In the agricultural environment, pesticide control requires a high risk of work and a high labor force for farmers. The effectiveness of pesticide control using unmanned aerial vehicles varies according to climate, land type, and characteristics of unmanned aerial vehicles. Therefore, an effective method for pesticide control by unmanned aerial vehicles considering the spraying conditions and environmental conditions is required. In this paper, we propose an efficient pesticide control system based on agricultural unmanned aerial vehicles considering the application conditions and environmental information for each crop. The effectiveness of the proposed model was demonstrated by measuring the drop uniformity of pesticides according to the change in altitude and speed after attaching the sensory paper and measuring the penetration rate of the drug inside the canopy according to the change in crop growth conditions. Experiment result, the closer the height of the UAV is to the ground, the more evenly the crops are sprayed, but for safety reasons, 2m more is suitable, and on average a speed of 2m/s is most suitable for control. The proposed control system is expected to help develop intelligent services based on the use of various unmanned aerial vehicles in agricultural environments.

Development of Portable Ground Control System for Operation of Unmanned Aerial Vehicle (무인항공기 운용을 위한 이동형 지상제어 시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.127-133
    • /
    • 2004
  • This paper described development of the portable ground control system(PGCS) for unmanned aerial vehicle. In the design of GCS, it upload mission planning that aircraft has to perform and has to receive position, attitude, state, navigation information all about the aircraft. Aircraft states and trajectory are displayed using this system on line. The PGCS is composed of commercial notebook computer, RF modem for communication between aircraft and PGCS, input/output board, remote control receiver, switches and lamps. Performance of this system is verified by flight test of small unmanned aerial vehicle.

Aerial Application using a Small RF Controlled Helicopter (I) - Status and Cost Analysis - (소형 무인헬기를 이용한 항공방제기술 (I) - 현황 및 경제성 분석 -)

  • Koo Y.M.;Lee C.S.;Soek T.S.;Shin S.K.;Kang T.G.;Kim S.H.;Choi T.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.95-101
    • /
    • 2006
  • Present chemical application system using a power sprayer has been a labor intensive, ineffective and shirking task in farming. Therefore, a small RF controlled (unmanned) helicopter was suggested to replace the conventional spray system. The aerial application using the unmanned helicopter has been already utilized in Japan, where total area applied up to 704,000 ha in 2005. In this article, the status and cost analysis on the unmanned agricultural helicopter were studied. The aerial application using the agricultural helicopter helps precise and timely spraying and reduces labor intensity and pollution. The field capacity of the helicopter was found to be 60-70 ha a day. The break even point was estimated near the operating area of 750 ha annum. The development of an agricultural helicopter was necessary for taking advantages of both technique and economy.

Technology Keyword Network and Cognitive Map Analysis: to prospect promising technology of UAV(Unmanned Aerial Vehicle) airframe industry (기술 키워드 네트워크와 인지지도 분석을 통한 무인항공기 비행체산업의 유망기술 도출 연구)

  • Joo, Seong-Hyeon;Ha, Sung-Ho;Park, Sang-Hyeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.55-72
    • /
    • 2016
  • This study aims at providing a methodology for retaining international technology competitiveness, marketable industry, and sustainable promising technology in a field of new growth engine industry such as national unmanned aerial vehicle industry. We draw a result by analysing with tools such as KrKwic, Excel, NetMiner, presenting methods of a Social Network Analysis, sub-group analysis, and cognitive map analysis based on patent data in a field of unmanned aerial vehicle industry. As a result, some future promising technologies are prospected as what worths concentrated investment, such as 'pilot control tech', 'identification of friend or foe tech'.

Accuracy Evaluation and Terrain Model Automation of Reservoir Using Unmanned Aerial Vehicle System (무인항공시스템을 활용한 저수지 지형모델 생성 및 정확도 평가)

  • Kim, Jungmeyon;Park, Sungsik;Kim, Jaehwi;Ahn, Seungwoo;Park, Sungyong;Kim, Yongseong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • This study examines methods for creating terrain models of reservoirs and techniques for verifying the accuracy. Such methods and techniques use unmanned aerial vehicles which are capable of capturing high-resolution images repetitively, are highly economic, and capable of surveying wide areas. In addition, this study suggests methods of acquiring data for reservoir safety management, the methods which also employ the unmanned aerial vehicles. Therefore, this study helps solving problems that can arise when National Disaster Management System rebuilds a reservoir management database, such as a shortage of local government manpower. This study also contributes to providing element technology necessary for advancing the database.

Path Planning of the Low Altitude Flight Unmanned Aerial Vehicle for the Neutralization of the Enemy Firepower (대화력전 임무수행을 위한 저고도 비행 무인공격기의 경로계획)

  • Yang, Kwang-Jin;Kim, Si-Tai;Jung, Dae-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.424-434
    • /
    • 2012
  • This paper presents a path planning algorithm of the unmanned aerial vehicle for the neutralization of the enemy firepower. The long range firepower of the ememy is usually located at the rear side of the mountain which is difficult to bomb. The path planner not only consider the differential constraints of the Unmanned Aerial Vehicle (UAV) but also consider the final approaching angle constraint. This problem is easily solved by incorporating the analytical upper bounded continuous curvature path smoothing algorithm into the Rapidly Exploring Random Tree (RRT) planner. The proposed algorithm can build a feasible path satisfying the kinematic constraints of the UAV on the fly. In addition, the curvatures of the path are continuous over the whole path. Simulation results show that the proposed algorithm can generate a feasible path of the UAV for the bombing mission regardless of the posture of the tunnel.

Design and Implementation of an Optimal 3D Flight Path Recommendation System for Unmanned Aerial Vehicles (무인항공기를 위한 최적의 3차원 비행경로 추천 시스템 설계 및 구현)

  • Kim, Hee Ju;Lee, Won Jin;Lee, Jae Dong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1346-1357
    • /
    • 2021
  • The drone technology, which is receiving a lot of attention due to the 4th industrial revolution, requires an Unmanned Aerial Vehicles'(UAVs) flight path search algorithm for automatic operation and driver assistance. Various studies related to flight path prediction and recommendation algorithms are being actively conducted, and many studies using the A-Star algorithm are typically performed. In this paper, we propose an Optimal 3D Flight Path Recommendation System for unmanned aerial vehicles. The proposed system was implemented and simulated in Unity 3D, and by indicating the meaning of the route using three different colors, such as planned route, the recommended route, and the current route were compared each other. And obstacle response experiments were conducted to cope with bad weather. It is expected that the proposed system will provide an improved user experience compared to the existing system through accurate and real-time adaptive path prediction in a 3D mixed reality environment.