• Title/Summary/Keyword: Unmanned

Search Result 3,022, Processing Time 0.028 seconds

Analysis of Thrust Characteristics with Propeller Shape for UAV (무인항공기용 프로펠러 형상에 따른 추력특성 해석)

  • Soohyeon Lee;Hwankee Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A study on propllers for unmaned aerial vehicles is conducted using the open softwares. Since the shape of the propeller is closely related to the thurst characteristics of the propulsion system, adopting an appropriate propeller will significantly reflect stable aerodynamic performances. In this study, propellers for unmanned aerial vehicles were modeled by using OpenVSP and Propel for comparison, the thrust characteristics according to the number of blades and the diameter of the propeller were analyzed. In addition, the tendency of thrust characteristics according to various propeller pitch angles was confirmed. Based on the analysis results of this study, the applicability of the propeller shape to the design of the unmanned aerial vehicle was confirmed. It is shownthat the analysis results of this study can be utilized when modeling the propeller shape in research such as a conceptual design of unmanned aerial vehicle. In this case, it should be noted that OpenVSP does not involve the viscous effect of air.

On the Establishment of LSTM-based Predictive Maintenance Platform to Secure The Operational Reliability of ICT/Cold-Chain Unmanned Storage

  • Sunwoo Hwang;Youngmin Kim
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.221-232
    • /
    • 2023
  • Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational reliability of the ICT/Cold-Chain Unmanned Storage, a predictive maintenance system was implemented based on the LSTM model. In this paper, a server for data management, such as collection and monitoring, and an analysis server that notifies the monitoring server through data-based failure and defect analysis are separately distinguished. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on RabbitMQ, loading data in an InMemory method using Redis, and managing snapshot data DB in real time. The predictive maintenance platform can contribute to securing reliability by identifying potential failures and defects that may occur in the operation of the ICT/Cold-Chain Unmanned Storage in the future.

Efficient Task-Resource Matchmaking Technique for Multiple/Heterogeneous Unmanned Combat Systems (다중/이종 무인전투체계를 위한 효율적 과업-자원 할당 기법)

  • Young-il Lee;Hee-young Kim;Wonik Park;Chonghui Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.188-196
    • /
    • 2023
  • In the future battlefield centered on the concept of mosaic warfare, the need for an unmanned combat system will increase to value human life. It is necessary for Multiple/Heterogeneous Unmanned Combat Systems to have suitable mission planning method in order to perform various mission. In this paper, we propose the MTSR model for mission planning of the unmanned combat system, and introduce a method of identifying a task by a combination of services using a request operator and a method of allocating resources to perform a task using the requested service. In order to verify the performance of the proposed task-resource matchmaking algorithm, simulation using occupation scenarios is performed and the results are analyzed.

A Study on Prediction of Suspension Time of Unmanned Light Rail according to Safety Personal Deployment (안전요원 배치 여부에 따른 무인운전 경전철의 운행중단 시간예측 연구)

  • Sang Log Kwak
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.1
    • /
    • pp.87-92
    • /
    • 2023
  • The number of unmanned light rail train operators is continuously increasing in Korea. In a failure event during an operation due to the nature of the unmanned operation, recovery is performed based on the remote control. However, if remote recovery is not feasible, safety personnel arrive at the train to resume the train operation. There are regulations on safety personnel and the suspension time of the train operation. However, there is currently no rule for safety personnel deployment. Currently, railway operating organizations operate in three scenarios: safety personnel on board trains, stationed at stations, and deployed at major stations. Four major factors influence the downtime for each emergency response scenario. However, these four influencing factors vary too much to predict results with simple calculations. In this study, four influencing factors were considered as random variables with high uncertainty. In addition, the Monte Carlo method was applied to each scenario for the safety personnel deployment to predict train service downtime. This study found a 17% difference in train service suspension by safety personnel deployment scenario. The results of this study can be used in setting service goals, such as standards for future safety personnel placement and frequency of service interruptions.

Growth Monitoring for Soybean Smart Water Management and Production Prediction Model Development

  • JinSil Choi;Kyunam An;Hosub An;Shin-Young Park;Dong-Kwan Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.58-58
    • /
    • 2022
  • With the development of advanced technology, automation of agricultural work is spreading. In association with the 4th industrial revolution-based technology, research on field smart farm technology is being actively conducted. A state-of-the-art unmanned automated agricultural production demonstration complex was established in Naju-si, Jeollanam-do. For the operation of the demonstration area platform, it is necessary to build a sophisticated, advanced, and intelligent field smart farming model. For the operation of the unmanned automated agricultural production demonstration area platform, we are building data on the growth of soybean for smart cultivated crops and conducting research to determine the optimal time for agricultural work. In order to operate an unmanned automation platform, data is collected to discover digital factors for water management immediately after planting, water management during the growing season, and determination of harvest time. A subsurface drip irrigation system was established for smart water management. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. Vegetation indices were collected using drones to find key factors in soybean production prediction. In addition, major growth characteristics such as stem length, number of branches, number of nodes on the main stem, leaf area index, and dry weight were investigated. By discovering digital factors for effective decision-making through data construction, it is expected to greatly enhance the efficiency of the operation of the unmanned automated agricultural production demonstration area.

  • PDF

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

A Study on The Industrial Complex Disaster Surveillance and Monitoring System Using Drones (드론을 활용한 산업단지 재난감시 및 모니터링 시스템에 관한 연구)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • In this study, we introduce a system for real-time monitoring of field conditions within an industrial complex using a 5G network UAV (: Unmanned Aerial Vehicle). When a monitoring event occurs in a sensor mounted on a UAV (detection of fire, harmful gas, or industrial disaster type human accident), key information from the sensor is transmitted to the UAS (: Unmanned Aerial System) application server. As a result of this information transmission and processing, managers or operators of the Industrial Complex Corporation were able to secure legal basis data for fatal accidents, fires, and detection of harmful gases at sites within the Industrial Complex Corporation through trigger processing for each accident risk situation.

Safe landing control of unmanned Quad-rotor Emergency Procedures (긴급 상황에 대비한 무인 쿼드로터의 안전 착륙 제어)

  • Baek, Seung-Jun;Park, Jong-Ho;Ryu, Ji-Hyoung;Lim, Shin-Teak;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2335-2342
    • /
    • 2014
  • If you want to use the unmanned quad rotor for emergency information provision and information about the traffic situation of real-time and moving information is included in the car to help in emergency vehicle operation of the city and in the distribution future innovation the need to consider to have enough safety of the use of silent quad rotor. Therefore, in this study, the unmanned quad rotor system research of safe landing control from the center for the improvement of safety of unmanned quad rotor system you have a motor of four, has taken a good structural balance system based on the dynamic model and motion considering the nonlinear characteristics, and attempts to proceed via non-linearity and system disturbances, tough Fuzzy controller, and analyzed through a computer simulation result.

The Analysis of Mission Profile of the KC-100 UAV (KC-100 무인화 비행체 임무 형상 분석)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.49-57
    • /
    • 2020
  • The KC-100 has completed civil type certification with the Ministry of Land, Infrastructure, and Transport, and is currently under development as an unmanned aerial vehicle as part of the Ministry of Land, Infrastructure, and Transport. The Certification Technology of small Unmanned Airplane system (CTsUA system), which is an unmanned KC-100, is being developed to enable the installation of heavy-duty mission equipment and long-time flight missions. This study investigated the process and results of analyzing various parameters such as aircraft weight, airspeed, flight altitude, required horsepower, and fuel consumption at each stage to construct a mission profile based on the operational concept of the CTsUA system. To maintain a maximum take-off weight of 3,600 lbs (1,633 kg), the analysis determined that the weight of the application equipment for the unmanned system should be kept below 80 lbs (36 kg).

System Design of a Deep-sea Unmanned Underwater Vehicle for Scientific Research (심해 과학조사용 무인잠수정의 시스템 설계)

  • Lee, Pan-Mook;Lee, Choong-Moo;JEON, Bong-Hwan;Hong, Seok-Won;Lim, Yong-Kon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.243-250
    • /
    • 2002
  • According to Ocean Korea 21, a basic plan established by the Ministry of Maritime Affairs and Fisheries (MOMAF) of Korea in May 2000, Korea Research Institute of Ships and Ocean Engineering (KRISO) proposed a program for the development of a deep-sea unmanned underwater vehicle (UUV) to explore deep sea for scientific purpose. KRISO has launched a project in May 2001 under the support of MOMAF. The deep-sea unmanned underwater vehicle will be applied to scientific researches in deep-sea as well as in shallow water. For operation of underwater vehicles in shallow water near the Korean Peninsula, a special design is required because of strong tidal current. In addition, MOMAF requires the vehicle to be designed for the purpose of long range survey, a long-term observation, and precise works in a specific area. Thus, KRISO has planned to design the system with the functional combination of both ROV and AUV. This paper presents the design of the deep-sea unmanned underwater vehicle.

  • PDF