• Title/Summary/Keyword: Unlocking Mechanism

Search Result 9, Processing Time 0.024 seconds

Development of Inertial Locking Anti-G Buckle of A Seatbelt System With Pre-tensioner (프리텐셔너가 장착된 시트벨트 시스템의 관성잠김 안전버클 개발)

  • Tak, Tae-Oh;Kuk, Min-Gu;Kim, Dae-Hee;Park, Jae-Soon;Shin, Seung-Eon;Choi, Seok
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.47-54
    • /
    • 2006
  • To improve passenger safety, seat belt systems with pre-tensioner that tightens seat belt webbing using explosive just before collision are widely used these days. Even though seatbelt must not unlatched without passengers' operation. explosive power of pre-tensioner can cause unlocking of a buckle. To prevent the unlocking, an anti-g mass that blocks displacement of the release button has been attached to the buckle. In this study, the dynamics and statics of locking mechanism associated with operation of anti-g buckle has been theoretically investigated, and important design variables that affect the operation of anti-g buckle have been identified. Through the total seat belt system's dynamic simulation using force and displacement inputs obtained from seat belt sled test, design of the proposed anti-g buckle has been validated.

  • PDF

Multibody Analysis of a Push-Push Type Mechanism for Micro SIM Card Socket (Micro SIM Card Socket에 사용된 Push-Push Type 기구의 다물체동역학 해석)

  • Choi, Chan Kyu;Kim, Ju Chul;Yun, Ju Young;Sim, Jung Kil;Yoo, Hong Hee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A SIM card socket is used for a cell phone to fix an USIM card and a push-push mechanism is typically employed in the SIM card socket for a user convenience. A SIM card is inserted with locking when a user pushes the card once and a SIM card is removed with unlocking when a user pushes the card again. A push-push mechanism is operated by a heart-cam structure and a main spring. A cam slider and a cam stick consisting a push-push mechanism may be broken because of the main spring. So, dynamic stress at a cam slider and a cam stick which is generated by a main spring during operating should be analyzed and considered in the push-push mechanism design. In this paper, a flexible multibody model of a push-push mechanism was developed to analyze dynamic stress at a cam slider and a cam stick.

Protector Design and Shock Analysis for a Launch-Reconnaissance Robot (발사형 정찰로봇을 위한 보호체 설계 및 충격해석)

  • Kang, Bong-Soo;Park, Moon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.971-976
    • /
    • 2011
  • This paper presents the design concepts of a protector for a launch-reconnaissance robot that is to be deployed for data-collection in hazardous regions. The protector protects the reconnaissance robot inside from shock induced during the process of launch, flight, and landing. Since the outer shells of the protector are automatically opened wide by the unlocking mechanism during the landing stage, the reconnaissance robot can easily exit the protector and move around to carry out its mission. We carefully simulated a finite-element model of the protector with the robot and compared the results with the actual dynamic behavior of the system. Shock- response tests using a droptable showed that the proposed protector filled with silicon material successfully attenuated external shock.

Remote-controlled micro locking mechanism for plate-type nuclear fuel used in upflow research reactors

  • Jin Haeng Lee;Yeong-Garp Cho;Hyokwang Lee;Chang-Gyu Park;Jong-Myeong Oh;Yeon-Sik Yoo;Min-Gu Won;Hyung Huh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4477-4490
    • /
    • 2023
  • Fuel locking mechanisms (FLMs) are essential in upward-flow research reactors to prevent accidental fuel separation from the core during reactor operation. This study presents a novel design concept for a remotely controlled plate-type nuclear fuel locking mechanism. By employing electromagnetic field analysis, we optimized the design of the electromagnet for fuel unlocking, allowing the FLM to adapt to various research reactor core designs, minimizing installation space, and reducing maintenance efforts. Computational flow analysis quantified the drag acting on the fuel assembly caused by coolant upflow. Subsequently, we performed finite element analysis and evaluated the structural integrity of the FLM based on the ASME boiler and pressure vessel (B&PV) code, considering design loads such as dead weight and flow drag. Our findings confirm that the new FLM design provides sufficient margins to withstand the specified loads. We fabricated a prototype comprising the driving part, a simplified moving part, and a dummy fuel assembly. Through basic operational tests on the assembled components, we verified that the manufactured products meet the performance requirements. This remote-controlled micro locking mechanism holds promise in enhancing the safety and efficiency of plate-type nuclear fuel operation in upflow research reactors.

The Solution of Reliability Problem for the Actuator Latch Device of Hard Disk Drive Using TRIZ (트리즈를 활용한 하드디스크 드라이브 액추에이터 래치 장치의 신뢰성 문제 해결)

  • Jeong, Hai Sung
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.147-151
    • /
    • 2014
  • An actuator latch device of a hard disk drive is installed for locking an actuator to hold a magnetic head parked in a parking zone. Applying an external force to the drive, the head can move away from the parking zone and destroy data on the disk. A magnet latching mechanism is used to prevent the actuator from moving when the computer is not in use. A permanent magnet holds the actuator when the head is in the parking zone. When the computer is turned on, the actuator has to overcome the latch magnet in order to move. A stronger latch magnet will hold the actuator adequately, but the actuator will not be released when unlocking is required. A breakthrough solution is needed to improve the reliability of the drive without any deterioration of its performance. In order to obtain the idea for resolving this technical contradiction, we analyse patents for actuator latch device of a hard disk drive. A practical way for solving contradictions in product development using TRIZ is proposed in this paper.

Application of Umbilical System for Launch Vehicle (우주 발사체 엄빌리칼 시스템의 현황 및 적용사례)

  • Kim, Dae Rae;Lim, Chankyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.21-25
    • /
    • 2017
  • The umbilical system used for launch vehicle is to connect all ground supply lines (Pneumatic, hydraulic and electrical) to launch vehicle and disconnect those at few second before launch vehicle lift-off (or simultaneously with launch vehicle lift-off). During launch preparation stage, all umbilical shall be securely connected and also at separation stage, separation of all umbilical line shall be guaranteed. Therefore finding an appropriate connection force is a key factor on development of umbilical system. According to these design requirement, various kind of umbilical system has been developed from early stage of space development till today. In this paper, various kind of umbilical system developed so far is introduced according to its feature and operational concept. Also, umbilical system used for KSLV-II is introduced

  • PDF

Automated Smudge Attacks Based on Machine Learning and Security Analysis of Pattern Lock Systems (기계 학습 기반의 자동화된 스머지 공격과 패턴 락 시스템 안전성 분석)

  • Jung, Sungmi;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.903-910
    • /
    • 2016
  • As smart mobile devices having touchscreens are growingly deployed, a pattern lock system, which is one of the graphical password systems, has become a major authentication mechanism. However, a user's unlocking behaviour leaves smudges on a touchscreen and they are vulnerable to the so-called smudge attacks. Smudges can help an adversary guess a secret pattern correctly. Several advanced pattern lock systems, such as TinyLock, have been developed to resist the smudge attacks. In this paper, we study an automated smudge attack that employs machine learning techniques and its effectiveness in comparison to the human-only smudge attacks. We also compare Android pattern lock and TinyLock schemes in terms of security. Our study shows that the automated smudge attacks are significantly advanced to the human-only attacks with regard to a success ratio, and though the TinyLock system is more secure than the Android pattern lock system.

Development of Fracture-Type Protector for a Launching Reconnaissance Robot (발사형 정찰로봇을 위한 파단형 보호체 개발)

  • Kang, Bong-Soo;Cho, Yoon-Ho;Choi, Jeong-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1473-1478
    • /
    • 2012
  • This paper presents the development of a fracture-type protector for carrying a reconnaissance robot to a remote target area. Instead of a conventional unlocking mechanism, a separation method based on the fracture of assembled parts was implemented in the proposed lightweight protector in order to improve the feasibility for a real battlefield. Simulations using the finite element model of the protector and the robot were performed to verify the fracture under the given loading conditions, and shock experiments using a drop table were performed to calculate shock transmittance through the protector to the robot. Several field tests for a 100-m flight proved that the proposed scenario (launching, flying, landing, and separation) was achieved successfully.

Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy

  • Bisan El Dakkak;Jalal Taneera;Waseem El-Huneidi;Eman Abu-Gharbieh;Rifat Hamoudi;Mohammad H. Semreen;Nelson C. Soares;Eman Y. Abu-Rish;Mahmoud Y. Alkawareek;Alaaldin M. Alkilany;Yasser Bustanji
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.267-280
    • /
    • 2024
  • Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.