• 제목/요약/키워드: Unloading Robot

검색결과 24건 처리시간 0.02초

On the Integrated Operation Concept and Development Requirements of Robotics Loading System for Increasing Logistics Efficiency of Sub-Terminal

  • Lee, Sang Min;Kim, Joo Uk;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.85-94
    • /
    • 2022
  • Recently, consumers who prefer contactless consumption are increasing due to pandemic trends such as Corona 19. This is the driving force for developing the last mile-based logistics ecosystem centered on the online e-commerce market. Lastmile led to the continued development of the logistics industry, but increased the amount of cargo in urban area, and caused social problems such as overcrowding of logistics. The courier service in the logistics base area utilizes the process of visiting the delivery site directly because the courier must precede the loading work of the cargo in the truck for the delivery of the ordered product. Currently, it's carried out as automated logistics equipment such as conveyor belt in unloading or classification stage, but the automation system isn't applied, so the work efficiency is decreasing and the intensity of the courier worker's labor is increased. In particular, small-scale courier workers belonging to the sub-terminal unload at night at underdeveloped facilities outside the city center. Therefore, the productivity of the work is lowered and the risk of safety accidents is exposed, so robot-based loading technology is needed. In this paper, we have derived the top-level concept and requirements of robot-based loading system to increase the flexibility of logistics processing and to ensure the safety of courier drivers. We defined algorithms and motion concepts to increase the cargo loading efficiency of logistics sub-terminals through the requirements of end effector technology, which is important among concepts. Finally, the control technique was proposed to determine and position the load for design input development of the automatic conveyor system.

무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발 (A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement)

  • 배성우;한대규;류재호;이현희;안채헌
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

나사 가공 관리를 위한 스마트팩토리 시스템 설계에 관한 연구 (A Study on Smart Factory System Design for Screw Machining Management)

  • 이은규;김동완;이상완;김재중
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.329-331
    • /
    • 2018
  • 본 논문은 나사 가공을 위한 원재료 공급부터 시작해서 선반 머신으로 가공되어 제품의 불량 여부에 대한 검수를 스마트팩토리 기술이 도입된 로봇이 자동으로 조립 및 분해 작업을 통해 검수를 해주는 모니터링 시스템에 대해 제안하였다. 생산 지시 수량과 생산 지시에 따른 완료 체크는 변위센서로 원재료 입고 여부에 따른 생산 현황을 체크하였고 가공된 Female, male 의 피치, 외형 검사를 진행하여 OK, NG 판별을 한다. 로봇시스템에서는 원자재 적재, 반출, 파레트 이송 및 전반적인 공정에 개입하며, 유기적으로 구동될 수 있도록 중계역할을 하였고 나사 가공품에 대한 위치 정보는 비접촉 무선 태그를 활용하여 위치 정보를 수집하였고 Energy Saving System으로 장비 생산 효율성 및 가동율에 대해 체크하였다. 환경센서는 공조환경 데이터(온도, 습도)를 수집하여 정확한 온도 및 습도 측정 하여, 제품 가공 품질 영향 체크 제품의 구동 위험 수준 환경(과열, 다습)에 대해 관리 감시하였고 CNC 및 로봇모듈에 대한 제어는 PLC로 하여 이기종 시스템 통합 운영하였다.

  • PDF

자동 광 정렬시스템 및 최적 광 정렬알고리즘의 개발 (Development of Automatic Optical Fiber Alignment System and Optimal Aligning Algorithm)

  • 엄철;김병희;최영석
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.194-201
    • /
    • 2004
  • Optical fibers are indispensable fer optical communication systems that transmit large volumes of data at high speed. But the aligning technology under the sub-micron accuracy is required for the precise axis adjustment and connection. For the purpose of precise alignment of the optical arrays, in this research, we have developed the 12-axis(with 8 automated axis and 4 manual axis) automatic optical fiber alignment system including the image processing-based searching system, the automatic loading system using the robot and the suction toot and the automatic UV bonding system. In order to obtain the sub-micron alignment accuracy, two 4-axis PC-based motion controllers and the two 50nm resolution 6-aixs micro-stage actuated by micro stepping motors are adopted. The fiber aligning procedure consists of two steps. Firstly, the optical wave guide and an input optical array are aligned by the 6-axis input micro-stage with the IR camera. The image processing technique is introduced to reduce primary manual aligning time and result in achieving the 50% decrease of aligning time. Secondly, the IR camera is replaced by the output micro-stage and a wave guide and two optical arrays are aligned simultaneously before the laser power intensity delivered to the optical powermeter reached the threshold value. When the aligning procedure is finished, the wave guide and arrays are W bonded. The automatic loading/unloading system is also introduced and the entire wave guide handing time is reduced significantly compared to the former commercial aligning system.