• 제목/요약/키워드: Unknown virtual coefficient

검색결과 4건 처리시간 0.017초

다수의 미지 가상 입력 계수들을 가지는 비선형 시스템에 대한 적응 안정화 (Adaptive stabilization for nonlinear systems with multiple unknown virtual control coefficients)

  • 서상보;정진우;서진헌;심형보
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.76-78
    • /
    • 2009
  • This paper considers the problem of global adaptive regulation for a class of nonlinear systems which have multiple unknown virtual control coefficient. By using a new parameter estimator and backstepping technique, we design a smooth state feedback control law, parameter update laws that estimate the unknown virtual control coefficients, and a continuously differentiable Lyapunov function which is positive definite and proper.

  • PDF

Robust Adaptive Control for a Class of Nonlinear Systems with Complex Uncertainties

  • Seo, Sang-Bo;Back, Ju-Hoon;Shim, Hyung-Bo;Seo, Jin-H.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.292-300
    • /
    • 2009
  • This paper considers a robust adaptive stabilization problem for a class of uncertain nonlinear systems which include an unknown virtual control coefficient, an unknown constant parameter, and a time-varying disturbance whose bound is unknown, We propose a new estimator for an un-known virtual control coefficient and present a robust adaptive backstepping design procedure which results in a smooth state feedback control law, a new two-dimensional parameter update law, and a $C^1$ Lyapunov function which is positive definite and proper.

DC 모터를 위한 전류궤환형 학습제어기 설계 (Design of Current-Feedback Control for DC Motors)

  • 백승민;김진홍;국태용
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1520-1526
    • /
    • 1999
  • This paper presents a current feedback learning controller for dynamic control of DC motors. The proposed controller uses the full third-order dynamics model of DC motor system to drive stable learning rules for virtual current learning input, voltage learning input, and the coefficient of electromotive force. It is shown that the proposed learning controller drives the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed adaptive learning controller.

  • PDF

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제70권3호
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.