• 제목/요약/키워드: Unknown Morpheme Tagging

검색결과 2건 처리시간 0.022초

기계학습에 기반한 한국어 미등록 형태소 인식 및 품사 태깅 (Part-Of-Speech Tagging and the Recognition of the Korean Unknown-words Based on Machine Learning)

  • 최맹식;김학수
    • 정보처리학회논문지B
    • /
    • 제18B권1호
    • /
    • pp.45-50
    • /
    • 2011
  • 한국어 형태소 분석에서 미등록 형태소 오류들은 2가지 유형으로 나뉜다. 첫 번째 오류 유형은 형태소 분석기가 어떤 형태소열도 찾아내지 못하는 것이고, 두 번째 오류 유형은 등록 형태소들의 잘못된 조합을 찾아내는 것이다. 지금까지 대부분의 기존 미등록 형태소 추정 기술들은 단지 첫 번째 오류 유형에만 초점을 맞추어 왔다. 본 논문에서는 2가지 유형의 오류들의 모두 다룰 수 있는 미등록 형태소 추정 방법을 제안한다. 제안 방법은 SVM(Support Vector Machine)을 이용하여 미등록 형태소 오류들을 포함할 가능성이 있는 어절들을 검출한다. 그리고 CRFs(Conditional Random Fields)를 이용하여 검출된 어절들의 형태소 분리와 품사 태깅을 수행한다. 실험에서 제안 방법은 기능어 최장 일치 기반의 전형적인 방법보다 뛰어난 성능을 보였다. 실험 결과에 기초하여 미등록 형태소 오류의 두 번째 유형이 한국어 형태소 분석의 성능을 올리기 위해서 꼭 다루어져야 한다는 것을 알 수 있었다.

확률 기반 미등록 단어 분리 및 태깅 (Probabilistic Segmentation and Tagging of Unknown Words)

  • 김보겸;이재성
    • 정보과학회 논문지
    • /
    • 제43권4호
    • /
    • pp.430-436
    • /
    • 2016
  • 형태소 분석시 나타나는 고유명사나 신조어 등의 미등록어에 대한 처리는 다양한 도메인의 문서 처리에 필수적이다. 이 논문에서는 3단계 확률 기반 형태소 분석에서 미등록어를 분리하고 태깅하기 위한 방법을 제시한다. 이 방법은 고유명사나 일반명사와 같은 개방어 뒤에 붙는 다양한 접미사를 분석하여 미등록 개방어를 추정할 수 있도록 했다. 이를 위해 형태소 품사 부착 말뭉치에서 자동으로 접미사 패턴을 학습하고, 확률 기반 형태소 분석에 맞도록 미등록 개방어의 분리 및 태깅 확률을 계산하는 방법을 제시하였다. 실험 결과, 제안한 방법은 새로운 미등록 용어가 많이 나오는 문서에서 미등록어 처리 성능을 크게 향상시켰다.