• Title/Summary/Keyword: Unknown Attack

Search Result 95, Processing Time 0.02 seconds

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique (백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

Virulence Phenotyping and Molecular Characterization of a New Virulence Type of Pyrenophora tritici-repentis the Causal Agent of Tan Spot

  • Benslimane, Hamida
    • The Plant Pathology Journal
    • /
    • v.34 no.2
    • /
    • pp.139-142
    • /
    • 2018
  • Pyrenophoratritici-repentis is the causal agent of tan spot. According to their ability to produce necrosis and/or chlorosis on a set of four differential bread wheats, the isolates of this fungus are currently grouped into eight races. When durum wheat genotypes were added to the differential set, a new virulence type was identified in Algeria. The isolates showing this virulence pattern are unable to attack bread wheat while they cause necrosis in durum genotypes. In this work, characterization of those isolates was based on pathological and molecular aspects. This included inoculation of bread and durum wheat, and virulence gene analysis using PCR and sequencing. The results showed that all isolates caused a resistance on all bread wheats of the differential set, while they produced necrosis in durum. ToxA and ToxB genes were amplified in all isolates, whereas toxb was absent. Sequence analysis for both genes showed no differences with those found in the two functional genes. The presence of two genes, ToxA and ToxB, despite the absence of symptoms usually caused by their products, suggests the existence of a new homologous for these two genes yet unknown. The presence of ToxA in the isolate unable to produce necrosis in Glenlea is reported for the first time.

Novel miR-1958 Promotes Mycobacterium tuberculosis Survival in RAW264.7 Cells by Inhibiting Autophagy Via Atg5

  • Ding, Shuqin;Qu, Yuliang;Yang, Shaoqi;Zhao, Ya'e;Xu, Guangxian
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.6
    • /
    • pp.989-998
    • /
    • 2019
  • Autophagy is crucial for immune defense against Mycobacterium tuberculosis (Mtb) infection. Mtb can evade host immune attack and survival within macrophages by manipulating the autophagic process. MicroRNAs (miRNAs) are small, non-coding RNAs that are involved in regulating vital genes during Mtb infection. The precise role of miRNAs in autophagy with the exits of Mtb remains largely unknown. In this study, we found miR-1958, a new miRNA that could regulate autophagy by interacting with 3'UTR of autophagy-related gene 5 (Atg5). In addition, Mtb infection triggered miR-1958 expression in RAW264.7 cells. What's more, miR-1958 overexpression blocked autophagic flux by impairing the fusion of autophagosomes and lysosomes. Overexpression of miR-1958 reduced Atg5 expression and LC3 puncta while inhibition of miR-1958 brought an increase of Atg5 and LC3 puncta; the opposite results were observed in detection of p62. The survival of Mtb in RAW264.7 cells transfected with mimic of miR-1958 was enhanced. Taken together, our research demonstrated that a novel miR-1958 could inhibit autophagy by interacting with Atg5 and favored intracellular Mtb survival in RAW264.7 cells.

Hemorrhagic Moyamoya Disease : A Recent Update

  • Fujimura, Miki;Tominaga, Teiji
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.136-143
    • /
    • 2019
  • Moyamoya disease (MMD) is a progressive cerebrovascular disease with unknown etiology, characterized by bilateral steno-occlusive changes at the terminal portion of the internal carotid artery and an abnormal vascular network formation at the base of the brain. MMD has an intrinsic nature to convert the vascular supply for the brain from internal carotid (IC) system to the external carotid (EC) system, as indicated by Suzuki's angiographic staging. Insufficiency of this 'IC-EC conversion system' could result not only in cerebral ischemia, but also in intracranial hemorrhage from inadequate collateral anastomosis, both of which represent the clinical manifestation of MMD. Surgical revascularization prevents cerebral ischemic attack by improving cerebral blood flow, and recent evidence further suggests that extracranial-intracranial bypass could powerfully reduce the risk of re-bleeding in MMD patients with posterior hemorrhage, who were known to have extremely high re-bleeding risk. Although the exact mechanism underlying the hemorrhagic presentation in MMD is undetermined, most recent angiographic analysis revealed the characteristic angio-architecture related to high re-bleeding risk, such as the extension and dilatation of choroidal collaterals and posterior cerebral artery involvement. We sought to update the current management strategy for hemorrhagic MMD, including the outcome of surgical revascularization for hemorrhagic MMD in our institute. Further investigations will clarify the optimal surgical strategy to prevent hemorrhagic manifestation in patients with MMD.

Destruction and Improper Restoration of Cheomseongdae (경주첨성대의 파손과 잘못된 복구)

  • Chang, Hwal Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.2
    • /
    • pp.72-99
    • /
    • 2012
  • Cheomseongdae, Korea's so-called "star-gazing tower" located in the former Silla Dynasty capital of Gyeongju, is generally believed to have maintained its original shape since its construction in 647. The stone structure was closely examined and measured by Gyeongju National Museum in 1962 and reexamined by Korean National Research Institute of Cultural Heritage in 2009. This research noted the following structural anomalies of Cheomseongdae. A corner of the top rectangle layer was broken diagonally in a form that can never be attributed to a natural cause. The four metal clamps under the top rectangle layer had been missing. Four grooves, with unknown usage, exist on the sides of the long rectangular stones projected out of the circular body at the second and third circular layers from the top. On the second circular layer from the top, there are three flat stones, less than a half as tall as their surrounding stones. The average height of the third circular layer from the top is only 23.5 cm, while the overall average of the entire 27 circular layers is 29.9cm. This research postulates that all these anomalies are due to prior destructions and improper restorations of the structure. The first destruction and restoration of Cheomsengdae was likely to have occurred before the mid 15th century. The damages might include a pavilion on the top of the structure and a stone with the name of the structure carved in. The Mongolian invasion in the 13th century was a most likely cause. After the restoration, the structure suffered at least another attack. The damages on the top layer and the missing iron clamps were due to the later attack. The grooves and flat stones were to house holding device that affixed certain objects to the outer surface of the circular body. The metal or stone objects might have faced upward at the four corners of Chemseongdae, bridging the gaps between the rectangle layers and circular layers. The current Chemseongdae lost at least the four affixed objects, four holding devices, and one flat stone.

A study on machine learning-based defense system proposal through web shell collection and analysis (웹쉘 수집 및 분석을 통한 머신러닝기반 방어시스템 제안 연구)

  • Kim, Ki-hwan;Shin, Yong-tae
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.87-94
    • /
    • 2022
  • Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.

Study of Snort Intrusion Detection Rules for Recognition of Intelligent Threats and Response of Active Detection (지능형 위협인지 및 능동적 탐지대응을 위한 Snort 침입탐지규칙 연구)

  • Han, Dong-hee;Lee, Sang-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1043-1057
    • /
    • 2015
  • In order to recognize intelligent threats quickly and detect and respond to them actively, major public bodies and private institutions operate and administer an Intrusion Detection Systems (IDS), which plays a very important role in finding and detecting attacks. However, most IDS alerts have a problem that they generate false positives. In addition, in order to detect unknown malicious codes and recognize and respond to their threats in advance, APT response solutions or actions based systems are introduced and operated. These execute malicious codes directly using virtual technology and detect abnormal activities in virtual environments or unknown attacks with other methods. However, these, too, have weaknesses such as the avoidance of the virtual environments, the problem of performance about total inspection of traffic and errors in policy. Accordingly, for the effective detection of intrusion, it is very important to enhance security monitoring, consequentially. This study discusses a plan for the reduction of false positives as a plan for the enhancement of security monitoring. As a result of an experiment based on the empirical data of G, rules were drawn in three types and 11 kinds. As a result of a test following these rules, it was verified that the overall detection rate decreased by 30% to 50%, and the performance was improved by over 30%.

Enhanced Equidistant Chosen Message Power Analysis of RSA-CRT Algorithm (RSA-CRT의 향상된 등간격 선택 평문 전력 분석)

  • Park, Jong-Yeon;Han, Dong-Guk;Yi, Ok-Yeon;Choi, Doo-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.117-126
    • /
    • 2011
  • RSA-CRT algorithm is widely used to improve the performance of RSA algorithm. However, it is also vulnerable to side channel attacks like as general RSA. One of the power attacks on RSA-CRT, proposed by Boer et al., is a power analysis which utilizes reduction steps of RSA-CRT algorithm with equidistant chosen messages, called as ECMPA(Equidistant Chosen Messages Power Analysis) or MRED(Modular Reduction on Equidistant Data) analysis. This method is to find reduction output value r=xmodp which has the same equidistant patterns as equidistant messages. One can easily compute secret prime p from exposure of r. However, the result of analysis from a reduction step in [5] is remarkably different in our experiment from what Boer expected in [5]. Especially, we found that there are Ghost key patterns depending on the selection of attack bits and selected reduction algorithms. Thus, in this paper we propose several Ghost key patterns unknown to us until now, then we suggest enhanced and detailed analyzing methods.

Numerical Calculation and Validation for Rudder Cavitation of a Large Container Ship (초대형 컨테이너선박 방향타의 캐비테이션 수치계산 및 검증)

  • Kim, Gun-Do;Moon, Il-Sung;Kim, Kyoung-Youl;Van, Suk-Ho;Lee, Chang-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.568-577
    • /
    • 2006
  • With the increase of ship size and speed, the loading on the propeller is increasing, which in turn increases the rotational speed in the propeller slipstream. The rudder placed in the propeller slip stream is therefore subject to severe cavitation with the increased angle of attack due to the increased rotational induction speed of the propeller. In the present paper the surface panel method, which has been proved useful in predicting the sheet cavitation on the propeller blade, is applied to solve the cavity boundary value problem on the rudder. The problem is then solved numerically by discretizing the rudder and cavity surface elements of the quadrilateral panels with constant strengths of sources and dipoles. The strengths of the singularities are determined satisfying the boundary conditions on the rudder and cavity surfaces. The extent of the cavity, which is unknown a priori, is determined by iterative procedure. Series of numerical experiments are performed increasing the degree of complexity of the rudder geometry and oncoming flows from the simple hydrofoil case to the real rudder in the circumferentially averaged propeller slipstream. Numerical results are presented with experimental results.