국내 모바일 커머스 시장은 현재 소셜커머스가 이용자 수 측면에서 오픈마켓을 압도하고 있는 상황이다. 산업계에서는 모바일 시장에서 소셜커머스의 성장에 대해 빠른 모바일 시장진입, 큐레이션 모델 등을 주요 성공요인으로 제시하고 있지만, 이에 대한 학계의 실증적인 연구 및 분석은 아직 미미한 상황이다. 본 연구에서는 사용자 리뷰를 바탕으로 모바일 소셜커머스와 오픈마켓의 사용자 이용경험을 비교 분석하는 탐험적인 연구를 수행하였다. 먼저 본 연구는 구글 플레이에 등록된 국내 소셜커머스 주요 3개 업체와 오픈마켓 주요 3개 업체의 모바일 앱 리뷰를 수집하였다. 본 연구는 LDA 토픽모델링을 통해 1만여건에 달하는 모바일 소셜커머스와 오픈마켓 사용자 리뷰를 지각된 유용성과 지각된 편리성 토픽으로 분류한 뒤 감정분석과 동시출현단어분석을 수행하였다. 이를 통해 본 연구는 국내 모바일 커머스 상에서 오픈마켓 이용자들에 비해 소셜커머스 이용자들이 서비스와 이용편리성 측면에서 더 긍정적인 경험을 하고 있음을 증명하였다. 소셜커머스는 '배송', '쿠폰', '할인'을 중심으로 서비스 측면에서 이용자들에게 긍정적인 이용경험을 이끌어내고 있는 반면, 오픈마켓의 경우 '로그인 안됨', '상세보기 불편', '멈춤'과 같은 기술적 문제 및 불편으로 인한 이용자 불만이 높았다. 이와 같이 본 연구는 사용자 리뷰를 통해 서비스 이용경험을 효과적으로 비교 분석할 수 있는 탐험적인 실증연구법을 제시하였다. 구체적으로 본 연구는 LDA 토픽모델링과 기술수용모형을 통해 사용자 리뷰를 서비스와 기술 토픽으로 분류하여 효과적으로 분석할 수 있는 새로운 방법을 제시하였다는 점에서 의의가 있다. 또한 본 연구의 결과는 향후 소셜커머스와 오픈마켓의 경쟁 및 벤치마킹 전략에 중요하게 활용될 수 있을 것으로 기대된다.
인공지능을 기반으로 한 다양한 연구들이 현대사회에 많은 변화를 불러일으키고 있다. 금융시장 역시 예외는 아니다. 로보어드바이저 개발이 활발하게 진행되고 있으며 전통적 방식의 단점을 보완하고 사람이 분석하기 어려운 부분을 대체하고 있다. 로보어드바이저는 인공지능 알고리즘으로 자동화된 투자 결정을 내려 다양한 자산배분 모형과 함께 활용되고 있다. 자산배분 모형 중 리스크패리티는 대표적인 위험 기반 자산배분 모형의 하나로 큰 자산을 운용하는 데 있어 안정성을 나타내고 현업에서 역시 널리 쓰이고 있다. 그리고 XGBoost 모형은 병렬화된 트리 부스팅 기법으로 제한된 메모리 환경에서도 수십억 가지의 예제로 확장이 가능할 뿐만 아니라 기존의 부스팅에 비해 학습속도가 매우 빨라 많은 분야에서 널리 활용되고 있다. 이에 본 연구에서 리스크패리티와 XGBoost를 장점을 결합한 모형을 제안하고자 한다. 기존에 널리 사용되는 최적화 자산배분 모형은 과거 데이터를 기반으로 투자 비중을 추정하기 때문에 과거와 실투자 기간 사이의 추정 오차가 발생하게 된다. 최적화 자산배분 모형은 추정 오차로 인해 포트폴리오 성과에서 악영향을 받게 된다. 본 연구는 XGBoost를 통해 실투자 기간의 변동성을 예측하여 최적화 자산배분 모형의 추정 오차를 줄여 모형의 안정성과 포트폴리오 성과를 개선하고자 한다. 본 연구에서 제시한 모형의 실증 검증을 위해 한국 주식시장의 10개 업종 지수 데이터를 활용하여 2003년부터 2019년까지 총 17년간 주가 자료를 활용하였으며 in-sample 1,000개, out-of-sample 20개씩 Moving-window 방식으로 예측 결과값을 누적하여 총 154회의 리밸런싱이 이루어진 백테스팅 결과를 도출하였다. 본 연구에서 제안한 자산배분 모형은 기계학습을 사용하지 않은 기존의 리스크패리티와 비교하였을 때 누적수익률 및 추정 오차에서 모두 개선된 성과를 보여주었다. 총 누적수익률은 45.748%로 리스크패리티 대비 약 5% 높은 결과를 보였고 추정오차 역시 10개 업종 중 9개에서 감소한 결과를 보였다. 실험 결과를 통해 최적화 자산배분 모형의 추정 오차를 감소시킴으로써 포트폴리오 성과를 개선하였다. 포트폴리오의 추정 오차를 줄이기 위해 모수 추정 방법에 관한 다양한 연구 사례들이 존재한다. 본 연구는 추정 오차를 줄이기 위한 새로운 추정방법으로 기계학습을 제시하여 최근 빠른 속도로 발전하는 금융시장에 맞는 진보된 인공지능형 자산배분 모형을 제시한 점에서 의의가 있다.
고객과 대중의 니즈를 파악하기 위한 감성분석의 중요성이 커지면서 최근 영어 텍스트를 대상으로 다양한 딥러닝 모델들이 소개되고 있다. 본 연구는 영어와 한국어의 언어적인 차이에 주목하여 딥러닝 모델을 한국어 상품평 텍스트의 감성분석에 적용할 때 부딪히게 되는 기본적인 이슈들에 대하여 실증적으로 살펴본다. 즉, 딥러닝 모델의 입력으로 사용되는 단어 벡터(word vector)를 형태소 수준에서 도출하고, 여러 형태소 벡터(morpheme vector) 도출 대안에 따라 감성분석의 정확도가 어떻게 달라지는지를 비정태적(non-static) CNN(Convolutional Neural Network) 모델을 사용하여 검증한다. 형태소 벡터 도출 대안은 CBOW(Continuous Bag-Of-Words)를 기본적으로 적용하고, 입력 데이터의 종류, 문장 분리와 맞춤법 및 띄어쓰기 교정, 품사 선택, 품사 태그 부착, 고려 형태소의 최소 빈도수 등과 같은 기준에 따라 달라진다. 형태소 벡터 도출 시, 문법 준수도가 낮더라도 감성분석 대상과 같은 도메인의 텍스트를 사용하고, 문장 분리 외에 맞춤법 및 띄어쓰기 전처리를 하며, 분석불능 범주를 포함한 모든 품사를 고려할 때 감성분석의 분류 정확도가 향상되는 결과를 얻었다. 동음이의어 비율이 높은 한국어 특성 때문에 고려한 품사 태그 부착 방안과 포함할 형태소에 대한 최소 빈도수 기준은 뚜렷한 영향이 없는 것으로 나타났다.
소셜미디어 확산으로 많은 사용자들이 SNS를 통해 자신의 생각과 의견을 표출하며 다른 사용자들과 상호작용하고 있다. 특히 트위터와 같은 마이크로블로그는 짧은 문장을 통해 영화, TV, 사회 현상 등과 같은 공통의 주제에 대해 많은 사람이 즉각적으로 의견을 표출하고 교환하는 플랫폼의 역할을 수행하고 있다. TV방송 프로그램에 대해서도 의견과 감정을 마이크로블로그를 통해 표출하고 있는데, 본 연구에서는 마이크로블로그의 내용과 시청률과의 관계를 살펴보기 위해, 지난 공중파 방송 프로그램에 대한 트윗을 수집하고 부적절한 트윗들을 제거한 후 형태소 분석을 수행하였다. 추출된 형태소뿐 아니라 이모티콘, 신조어 등 사용자가 입력한 모든 단어들을 후보 자질로 삼아 시청률과의 상관관계를 분석하였다. 실험을 위해 2013년 1월부터 10개월간의 예능프로그램 트윗의 데이터를 수집하여 전국 시청률 데이터와 비교 분석을 수행하였다. 트윗의 발생량은 일주일 중 방송된 요일에 가장 많았으며, 특히 방송시간 부근에서 급격히 증가하는 모습을 보였다. 이것은 전국에 동시간에 방송되는 공중파 프로그램의 특성상 공통된 관심 주제를 제공하기 때문에 나타나는 현상으로 여겨진다. 횟수 기반 자질로 방송 일의 총 트윗 수와 리트윗 수, 방송시간 중의 트윗 수와 리트윗 수와 시청률과의 상관 관계를 분석하였으나 모두 낮은 상관 계수를 나타냈다. 이것은 단순한 트윗 발생 빈도는 방송 프로그램의 만족도 또는 시청률을 제대로 반영하고 있지 못함을 의미한다. 내용 기반 자질로 추출한 단어들 중에는 높은 상관관계를 보여주는 단어들이 발견되었으며, 표준어가 아닌 이모티콘과 신조어 중에도 높은 상관관계를 보여주는 자질이 나타났다. 또한 방송시작 전과 후에 따라 상관계수가 높은 단어가 상이함을 발견하였다. 매주 같은 시간에 방송되는 TV 프로그램의 특성상, 방송을 기다리고 기대하는 내용의 트윗과 방송 후 소감을 표현하는 트윗의 내용에 차이가 존재하였다. 이러한 분석결과는 단어에 따라 시청률과 연관성이 높은 시간대가 달라짐을 의미하며, 시청률을 측정하고자 할 때 각 단어들의 시간대를 고려해서 사용해야 함을 의미한다. 본 연구에서 제안한 방법은 기존의 표본 추출을 통해 이루어지는 TV 시청률 측정을 보완할 수 있는 방법에 활용할 수 있으리라 기대된다.
구전(WOM: Word of Mouth)는 주변 사람들에게 상품에 대한 경험을 입에서 입으로 전달하는 현상을 말하며 소셜 미디어의 발전으로 온라인 구전(eWOM: Electronic Word of Mouth) 형태로 발전하였다. 구전 효과의 중요성으로 인해서 대부분의 기업들의 자사의 상품이나 서비스에 대한 온라인 구전에 촉각을 세우고 있으며, 특히 영화와 같은 경험재의 경우에는 그 영향력이 더욱 크다. 본 연구에서는 영화 커뮤니티에 대한 사회 네트워크 분석을 통해서 영화 흥행성과 지표인 매출에 미치는 영향요인을 규명하고자 한다. 영화 흥행성과 연구들에서 주요하게 다루어진 영화에 대한 구전의 크기(volume)와 방향성(valence)과 같은 구전 요인들을 추가하여, 구전 네트워크의 중심성 척도를 영향 요인에 고려하였다. 구전의 크기, 방향성, 그리고 3가지 중심성 척도(연결 중심성, 매개 중심성, 근접 중심성)의 최종 영화 매출에 영향 관계를 가설로 설정하였다. 제시한 연구 모형을 검증하기 위하여 대표적인 온라인 영화 커뮤니티 사이트인 IMDb(Internet Movie Database)에서 영화 구전 데이터를 수집하였고, Box-Office-Mojo사이트에서 영화 매출 데이터를 수집하였다. 2012년 9월부터 1년 동안, 주간 Top-10에 포함된 적이 있는 영화들을 대상으로 하였으며, 총 103개의 영화가 선정되어 이 영화들에 대한 메타 데이터와 커뮤니티 데이터가 수집되었다. 영화 커뮤니티 네트워크는 평가자들간의 댓글 관계를 기초로 구축하였다. 본 연구에서 사용한 3가지 중심성 척도는 사회 네트워크 분석 도구인 NodeXL을 사용하여 계산되었으며, 각 영화별 커뮤니티 참여자들의 중심성 척도의 평균값을 활용하였다. 가설 검증의 사전 분석을 위한 상관관계 분석에서는 3가지 중심성 척도간에 상관 관계가 높은 것으로 파악되어서, 각각에 대하여 별도로 회귀분석을 수행하였다. 분석 결과, 기존 연구와 일관성 있게 구전의 크기와 방향성은 영화 성과지표인 최종 매출에 긍정적인 영향을 미치는 것으로 파악되었다. 또한 구전 네트워크 내의 참여자 매개중심성 평균은 영화의 최종 매출에 영향을 미치는 것으로 파악되었다. 하지만 연결중심성과 근접중심성은 최종 매출에 영향을 주지 못하는 것으로 나타났다.
2013년 누적인원 2억명을 돌파한 한국의 영화 산업은 매년 괄목할만한 성장을 거듭하여 왔다. 하지만 2015년을 기점으로 한국의 영화 산업은 저성장 시대로 접어들어, 2016년에는 마이너스 성장을 기록하였다. 영화산업을 이루고 있는 각 이해당사자(제작사, 배급사, 극장주 등)들은 개봉 영화에 대한 시장의 반응을 예측하고 탄력적으로 대응하는 전략을 수립해 시장의 이익을 극대화하려고 한다. 이에 본 연구는 개봉 후 역동적으로 변화하는 관람객 수요 변화에 대한 탄력적인 대응을 할 수 있도록 주차 별 관람객 수를 예측하는데 목적을 두고 있다. 분석을 위해 선행연구에서 사용되었던 요인 뿐 아니라 개봉 후 역동적으로 변화하는 영화의 흥행순위, 매출 점유율, 흥행순위 변동 폭 등 선행연구에서 사용되지 않았던 데이터들을 새로운 요인으로 사용하고 Naive Bays, Random Forest, Support Vector Machine, Multi Layer Perception등의 기계학습 기법을 이용하여 개봉 일 후, 개봉 1주 후, 개봉 2주 후 시점에는 차주 누적 관람객 수를 예측하고 개봉 3주 후 시점에는 총 관람객 수를 예측하였다. 새롭게 제시한 변수들을 포함한 모델과 포함하지 않은 모델을 구성하여 실험하였고 비교를 위해 매 예측시점마다 동일한 예측 요인을 사용하여 총 관람객 수도 예측해보았다. 분석결과 동일한 시점에 총 관람객 수를 예측했을 경우 보다 차주 누적 관람객 수를 예측하는 것이 더 높은 정확도를 보였으며, 새롭게 제시한 변수들을 포함한 모델의 정확도가 대부분 높았으며 통계적으로 그 차이가 유의함으로써 정확도에 기여했음을 확인할 수 있었다. 기계학습 기법 중에는 Random Forest가 가장 높은 정확도를 보였다.
텍스트를 바탕으로 한 차원 기반 감성 분석(Aspect-Based Sentiment Analysis)은 다양한 산업에서 유용성을 주목을 받고 있다. 기존의 차원 기반 감성 분석에서는 타깃(Target) 혹은 차원(Aspect)만을 고려하여 감성을 분석하는 연구가 대다수였다. 그러나 동일한 타깃 혹은 차원이더라도 감성이 나뉘는 경우, 또는 타깃이 없지만 감성은 존재하는 경우 분석 결과가 정확하지 않다는 한계가 존재한다. 이러한 문제를 해결하기 위한 방법으로 차원과 타깃을 모두 고려한 감성 분석(Target-Aspect-Sentiment Detection, 이하 TASD) 모델이 제안되었다. 그럼에도 불구하고, TASD 기존 모델의 경우 구(Phrase) 간의 관계인 지역적인 문맥을 잘 포착하지 못하고 초기 학습 속도가 느리다는 문제가 있었다. 본 연구는 TASD 분야 내 기존 모델의 한계를 보완하여 분석 성능을 높이고자 하였다. 이러한 연구 목적을 달성하기 위해 기존 모델에 합성곱(Convolution Neural Network) 계층을 더하여 차원-감성 분류 시 보조 손실(Auxiliary loss)을 추가로 사용하였다. 즉, 학습 시에는 합성곱 계층을 통해 지역적인 문맥을 좀 더 잘 포착하도록 하였으며, 학습 후에는 기존 방식대로 차원-감성 분석을 하도록 모델을 설계하였다. 본 모델의 성능을 평가하기 위해 공개 데이터 집합인 SemEval-2015, SemEval-2016을 사용하였으며, 기존 모델 대비 F1 점수가 최대 55% 증가했다. 특히 기존 모델보다 배치(Batch), 에폭(Epoch)이 적을 때 효과적으로 학습한다는 것을 확인할 수 있었다. 본 연구에서 제시된 모델로 더욱 더 세밀한 차원 기반 감성 분석이 가능하다는 점에서, 기업에서 상품 개발 및 마케팅 전략 수립 등에 다양하게 활용할 수 있으며 소비자의 효율적인 구매 의사결정을 도와줄 수 있을 것으로 보인다.
정보통신기술의 발전과 모바일 기기 사용의 생활화로 인해 최근 많은 소비자들이 멀티채널 쇼핑(multi-channel shopping)이라는 새로운 쇼핑 행태를 보이고 있다. 온라인 쇼핑이 등장한 이후, 온라인 매장에서 상품을 구매하기 전 오프라인 매장에서 상품을 먼저 확인하는 쇼루밍(showrooming) 형태의 멀티채널 쇼핑이 한 때 대세를 이루었으나, 최근에는 스마트폰, 태블릿 PC, 스마트워치 등 스마트 기기 사용의 폭발적 증가와 옴니채널(omni-channel) 전략으로 대표되는 오프라인 채널의 대대적 반격으로 인해 오프라인 매장에서 상품을 구매하기 전 온라인(혹은 모바일)으로 정보를 먼저 확인하는 웹루밍(webrooming) 현상이 도드라지게 나타나 온라인 소매업자를 위협하고 있다. 이러한 상황에서 소비자의 온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인을 분석하는 것이 의미가 있음에도 불구하고, 기존 대부분의 선행연구는 싱글채널(single-channel) 혹은 멀티채널 쇼핑 자체에만 초점을 맞추고 있다. 이에, 본 연구에서는 밀고-당기기-이주이론(push-pull-mooring theory)을 바탕으로 소비자의 온라인 채널 쇼핑이 웹루밍 형태의 쇼핑으로 전환되는 과정을 상품정보 탐색과 구매행위로 각각 구분하여 그 영향을 실증하였다. 연구모형을 검증하기 위하여, 웹루밍 경험이 있는 수도권 소재 대학생을 대상으로 280개의 설문 표본을 수집하였다. 본 연구의 결과는 현업 마케팅 종사자에게 멀티채널 소비자들을 관리하는 데 있어 실무적인 시사점을 제공함과 동시에, 향후 다양한 형태의 멀티채널 쇼핑전환 연구로의 확장에 기여할 수 있을 것으로 기대한다.
디지털 환경의 도래와 언제 어디서나 접근할 수 있는 고속 네트워크의 도입으로 디지털 콘텐츠의 자유로운 유통과 이용이 가능해졌다. 이러한 환경은 역설적으로 다양한 저작권 침해를 불러 일으키고 있으며, 온라인 쇼핑몰에서 사용하는 상품 이미지의 도용이 빈번하게 발생하고 있다. 인터넷 쇼핑몰에 올라오는 상품 이미지와 관련해서는 저작물성에 대한 시비가 많이 일어나고 있다. 2001년 대법원 판결에 의하면 햄 광고를 위하여 촬영한 사진은 단순히 제품의 모습을 전달하는 사물의 복제에 불과할 뿐 창작적인 표현이 아니라고 적시하였다. 다만 촬영자의 손해액에 대해서는 인정함으로써 광고사진 촬영에 소요되는 통상적인 비용을 손해액으로 산정하게 하였다. 상품 사진 이외의 실내사진이라 하여도 '한정된 공간에서 촬영되어 누가 찍어도 동일한 사진'이 나올 수 밖에 없는 경우에는 창작성을 인정하지 않고 있다. 2003년 서울지방법원의 판례는 쇼핑몰에 사용된 사진에서 피사체의 선정, 구도의 설정, 빛의 방향과 양의 조절, 카메라 각도의 설정, 셔터의 속도, 셔터찬스의 포착 기타 촬영방법, 현상 및 인화 등의 과정에서 촬영자의 개성과 창조성이 인정되면 저작권법에 의하여 보호되는 저작물에 해당한다고 선고하여 손해를 인정하였다. 결국 쇼핑몰 이미지도 저작권법상의 보호를 받기 위해서는 단순한 제품의 상태를 전달하는 것이 아니라 촬영자의 개성과 창조성이 인정될 수 있는 노력이 필요하다는 것이며, 이에 따라 쇼핑몰 이미지를 제작하는 비용이 상승하고 저작권보호의 필요성은 더욱 높아지게 되었다. 온라인 쇼핑몰의 상품 이미지는 풍경사진이나 인물사진과 같은 일반 영상과 달리 매우 독특한 구성을 갖고 있으며, 따라서 일반 영상을 위한 이미지 워터마킹 기술로는 워터마킹 기술의 요구사항을 만족시킬 수 없다. 쇼핑몰에서 주로 사용되는 상품 이미지들은 배경이 흰색이거나 검은색, 또는 계조(gradient)색상으로 이루어져 있어서 워터마크를 삽입할 수 있는 공간으로 활용이 어렵고, 약간의 변화에도 민감하게 느껴지는 영역이다. 본 연구에서는 쇼핑몰에 사용되는 이미지의 특성을 분석하고 이에 적합한 이미지 워터마킹 기술을 제안하였다. 제안된 이미지 워터마킹 기술은 상품 이미지를 작은 블록으로 분할하고, 해당 블록에 대해서 DCT 양자화 처리를 함으로써 워터마크 정보를 삽입할 수 있도록 하였다. 균일한 DCT 계수 양자화 값의 처리는 시각적으로 영상에 블록화 현상을 불러오기 때문에 제안한 알고리즘에서는 블록의 경계 면에 붙어있는 영상 값에 대해서는 양자화 값의 분배를 작게 하고, 경계 면에서 멀리 떨어져있는 영상 값에 대해서는 양자화 값의 분배를 크게 함으로써 영상의 객관적 품질뿐 아니라 시각적으로 느끼는 주관적 품질도 향상 시켰다. 제안한 알고리즘에 의해서 워터마크가 삽입된 쇼핑몰 이미지의 PSNR(Peak Signal to Noise Ratio)은 40.7~48.5[dB]로 매우 우수한 품질을 보였으며, 일반 쇼핑몰 이미지에서 많이 사용되는 JPEG 압축은 QF가 70 이상인 경우에는 BER이 0이 나왔다.
온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.