• Title/Summary/Keyword: University class model

Search Result 2,065, Processing Time 0.033 seconds

Design and Application of Artificial Intelligence Experience Education Class for Non-Majors (비전공자 대상 인공지능 체험교육 수업 설계 및 적용)

  • Su-Young Pi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.529-538
    • /
    • 2023
  • At the present time when the need for universal artificial intelligence education is expanding and job changes are being made, research and discussion on artificial intelligence liberal arts education for non-majors in universities who experience artificial intelligence as part of their job is insufficient. Although artificial intelligence education courses for non-majors are being operated, they are mainly operated as theory-oriented education on the concepts and principles of artificial intelligence. In order to understand the general concept of artificial intelligence for non-majors, it is necessary to proceed with experiential learning in parallel. Therefore, this study designs artificial intelligence experiential education learning contents of difficulty that can reduce the burden of artificial intelligence classes with interest in learning by considering the characteristics of non-majors. After, we will examine the learning effect of experiential education using App Inventor and the Orange artificial intelligence platform. As a result of analysis based on the learning-related data and survey data collected through the creation of AI-related projects by teams, positive changes in the perception of the need for AI education were found, and AI literacy skills improved. It is expected that it will serve as an opportunity for instructors to lay the groundwork for designing a learning model for artificial intelligence experiential education learning.

The Relationship between Lifestyle and Life Satisfaction of Single-Person Youth Households: Focusing on the Mediating Effect of Interpersonal Relationship and the Moderating Effect of Parents' Socioeconomic Status (청년 1인 가구의 라이프 스타일과 삶의 만족도와의 관계: 대인관계의 매개효과와 부모의 사회·경제적 지위의 조절효과를 중심으로)

  • Cheol-gi Min
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.113-122
    • /
    • 2023
  • This study is a research study aimed at finding out the relationship between lifestyle and life satisfaction of single youth households and the relationship between the mediating role of interpersonal relationships and the effect of parents' social and economic status regulation in the relationship between lifestyle and life satisfaction. To this end, this study conducted a self-written survey of single-person youth households across the country through an online survey institution, regardless of gender, and used a total of 501 copies out of 520 subjects for final results analysis. The data were analyzed using the SPSS 25.0 and AMOS 25.0 programs, and the applied statistical techniques included correlation analysis, confirmatory factor analysis, structural equation model analysis, multi-group analysis, and bootstrap. As a result of the study, there was a significant positive (+) correlation between lifestyle, life satisfaction, and interpersonal relationships of single youth households, and interpersonal relationships were found to have a mediating effect in the relationship between lifestyle and life satisfaction. It was found to have a significant positive (+) effect on income and income satisfaction, but the moderating effect of education, economic activity, housing ownership type, and class consciousness was not significant. Based on the results of these studies, it was intended to provide basic data for developing various community programs and institutional arrangements for single youth households.

Prediction Model of Pine Forests' Distribution Change according to Climate Change (기후변화에 따른 소나무림 분포변화 예측모델)

  • Kim, Tae-Geun;Cho, Youngho;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.229-237
    • /
    • 2015
  • This study aims to offer basic data to effectively preserve and manage pine forests using more precise pine forests' distribution status. In this regard, this study predicts the geographical distribution change of pine forests growing in South Korea, due to climate change, and evaluates the spatial distribution characteristics of pine forests by age. To this end, this study predicts the potential distribution change of pine forests by applying the MaxEnt model useful for species distribution change to the present and future climate change scenarios, and analyzes the effects of bioclimatic variables on the distribution area and change by age. Concerning the potential distribution regions of pine forests, the pine forests, aged 10 to 30 years in South Korea, relatively decreased more. As the area of the region suitable for pine forest by age was bigger, the decreased regions tend to become bigger, and the expanded regions tend to become smaller. Such phenomena is conjectured to be derived from changing of the interaction of pine forests by age from mutual promotional relations to competitive relations in the similar climate environment, while the regions suitable for pine forests' growth are mostly overlap regions. This study has found that precipitation affects more on the distribution of pine forests, compared to temperature change, and that pine trees' geographical distribution change is more affected by climate's extremities including precipitation of driest season and temperature of the coldest season than average climate characteristics. Especially, the effects of precipitation during the driest season on the distribution change of pine forests are irrelevant of pine forest's age class. Such results are expected to result in a reduction of the pine forest as the regions with the increase of moisture deficiency, where climate environment influencing growth and physiological responses related with drought is shaped, gradually increase according to future temperature rise. The findings in this study can be applied as a useful method for the prediction of geographical change according to climate change by using various biological resources information already accumulated. In addition, those findings are expected to be utilized as basic data for the establishment of climate change adaptation policies related to forest vegetation preservation in the natural ecosystem field.

The Measurement and Comparison of the Relative Efficiency for Currency Futures Markets : Advanced Currency versus Emerging Currency (통화선물시장의 상대적 효율성 측정과 비교 : 선진통화 대 신흥통화)

  • Kim, Tae-Hyuk;Eom, Cheol-Jun;Kang, Seok-Kyu
    • The Korean Journal of Financial Management
    • /
    • v.25 no.1
    • /
    • pp.1-22
    • /
    • 2008
  • This study is to evaluate, to the extent to, which advanced currency futures and emerging currency futures markets can predict accurately the future spot rate. To this end, Johansen's the maximum-likelihood cointegration method(1988, 1991) is adopted to test the unbiasedness and efficiency hypothesis. Also, this study is to estimate and compare a quantitative measure of relative efficiency as a ratio of the forecast error variance from the best-fitting quasi-error correction model to the forecast error variance of the futures price as predictor of the spot price in advanced currency futures with in emerging currency futures market. Advanced currency futures is British pound and Japan yen. Emerging currency futures includes Korea won, Mexico peso, and Brazil real. The empirical results are summarized as follows : First, the unbiasedness hypothesis is not rejected for Korea won and Japan yen futures exchange rates. This indicates that the emerging currency Korea won and the advanced currency Japan yen futures exchange rates are likely to predict accurately realized spot exchange rate at a maturity date without the trader having to pay a risk premium for the privilege of trading the contract. Second, in emerging currency futures markets, the unbiasedness hypothesis is not rejected for Korea won futures market apart from Mexico peso and Brazil real futures markets. This indicates that in emerging currency futures markets, Korea won futures market is more efficient than Mexico peso and Brazil real futures markets and is likely to predict accurately realized spot exchange rate at a maturity date without risk premium. Third, this findings show that the results of unbiasedness hypothesis tests can provide conflicting finding. according to currency futures class and forecasts horizon period, Fourth, from the best-fitting quasi-error correction model with forecast horizons of 14 days, the findings suggest the Japan yen futures market is 27.06% efficient, the British pound futures market is 26.87% efficient, the Korea won futures market is 20.77% efficient, the Mexico peso futures market is 11.55%, and the Brazil real futures market is 4.45% efficient in the usual order. This indicates that the Korea won-dollar futures market is more efficient than Mexico peso, and Brazil real futures market. It is therefore possible to concludes that the Korea won-dollar currency futures market has relatively high efficiency comparing with Mexico peso and Brazil real futures markets of emerging currency futures markets.

  • PDF

Improving Bidirectional LSTM-CRF model Of Sequence Tagging by using Ontology knowledge based feature (온톨로지 지식 기반 특성치를 활용한 Bidirectional LSTM-CRF 모델의 시퀀스 태깅 성능 향상에 관한 연구)

  • Jin, Seunghee;Jang, Heewon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.253-266
    • /
    • 2018
  • This paper proposes a methodology applying sequence tagging methodology to improve the performance of NER(Named Entity Recognition) used in QA system. In order to retrieve the correct answers stored in the database, it is necessary to switch the user's query into a language of the database such as SQL(Structured Query Language). Then, the computer can recognize the language of the user. This is the process of identifying the class or data name contained in the database. The method of retrieving the words contained in the query in the existing database and recognizing the object does not identify the homophone and the word phrases because it does not consider the context of the user's query. If there are multiple search results, all of them are returned as a result, so there can be many interpretations on the query and the time complexity for the calculation becomes large. To overcome these, this study aims to solve this problem by reflecting the contextual meaning of the query using Bidirectional LSTM-CRF. Also we tried to solve the disadvantages of the neural network model which can't identify the untrained words by using ontology knowledge based feature. Experiments were conducted on the ontology knowledge base of music domain and the performance was evaluated. In order to accurately evaluate the performance of the L-Bidirectional LSTM-CRF proposed in this study, we experimented with converting the words included in the learned query into untrained words in order to test whether the words were included in the database but correctly identified the untrained words. As a result, it was possible to recognize objects considering the context and can recognize the untrained words without re-training the L-Bidirectional LSTM-CRF mode, and it is confirmed that the performance of the object recognition as a whole is improved.

Development of a Distribution Prediction Model by Evaluating Environmental Suitability of the Aconitum austrokoreense Koidz. Habitat (세뿔투구꽃의 서식지 환경 적합성 평가를 통한 분포 예측 모형 개발)

  • Cho, Seon-Hee;Lee, Kye-Han
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.504-515
    • /
    • 2021
  • To examine the relationship between environmental factors influencing the habitat of Aconitum austrokoreense Koidz., this study employed the MexEnt model to evaluate 21 environmental factors. Fourteen environmental factors having an AUC of at least 0.6 were found to be the age of stand, growing stock, altitude, topography, topographic wetness index, solar radiation, soil texture, mean temperature in January, mean temperature in April, mean annual temperature, mean rainfall in January, mean rainfall in August, and mean annual rainfall. Based on the response curves of the 14 descriptive factors, Aconitum austrokoreense Koidz. on the Baekun Mountain were deemed more suitable for sites at an altitude of 600 m or lower, and habitats were not significantly affected by the inclination angle. The preferred conditions were high stand density, sites close to valleys, and distribution in the northwestern direction. Under the five-age class system, the species were more likely to be observed for lower classes. The preferred solar radiation in this study was 1.2 MJ/m2. The species were less likely to be observed when the topographic wetness index fell below the reference value of 4.5, and were more likely observed above 7.5 (reference of threshold). Soil analysis showed that Aconitum austrokoreense Koidz. was more likely to thrive in sandy loam than clay. Suitable conditions were a mean January temperature of - 4.4℃ to -2.5℃, mean April temperature of 8.8℃-10.0℃, and mean annual temperature of 9.6℃-11.0℃. Aconitum austrokoreense Koidz. was first observed in sites with a mean annual rainfall of 1,670- 1,720 mm, and a mean August rainfall of at least 350 mm. Therefore, sites with increasing rainfall of up to 390 mm were preferred. The area of potential habitats having distributive significance of 75% or higher was 202 ha, or 1.8% of the area covered in this study.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Predictors of Latent Class of Longitudinal Medical Expenses of Older People and the Effects on Subjective Health (노인 의료비 변화궤적의 잠재계층 유형: 예측요인과 주관적 건강에 대한 영향)

  • Song, Si Young;Jun, Hey Jung;Choi, Bo Mi
    • 한국노년학
    • /
    • v.39 no.3
    • /
    • pp.467-484
    • /
    • 2019
  • The purpose of this study is to explore latent classes of longitudinal medical expenses of older people and to analyze its predictors and its effects on subjective health. Among participants of the Korean Health Panel, the sample of this study includes 1,119 people who is 65-year-old or older and reported their medical expenses for nine consecutive years. The analyses were conducted in three steps. First, Growth Mixture Model (GMM) was applied to find distinct subgroups showing similar patterns in medical expenses. The results showed four groups which were classified as high medical expenditure maintenance group, medical expenditure increase group, low medical expenditure maintenance group, and medical expenditure reduction group. Second, the multinominal logistic regression found that the presence of spouse, economic participation, the number of chronic diseases, and the type of health insurance were significant predictors of latent classes in medical expenses. In particular, the greater the number of chronic diseases, the higher the likelihood of belonging to the high medical expenditure maintenance group. In addition, medical benefit recipients are more likely to belong to the low medical cost maintenance and medical cost reduction groups. Third, multiple regression analysis revealed that the older people in the groups with low or reducing expenses reported better subjective health than people with higher expenses. This study has its meanings in exploring the heterogeneity in longitudinal medical expenses among older people and its predictors and its associations with health outcome. The results of this research provide background information in establishing public health policy for older people.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

Chemoprevention of Helicobacter pylori-associated Gastric Carcinogenesis in a Mouse Model; Is It Possible?

  • Hahm, Ki-Baik;Song, Young-Joon;Oh, Tae-Young;Lee, Jeong-Sang;Surh, Young-Joon;Kim, Young-Bae;Yoo, Byung-Moo;Kim, Jin-Hong;Ha, Sang-Uk;Nahm, Ki-Taik;Kim, Myung-Wook;Kim, Dae-Yong;Cho, Sung-Won
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.82-94
    • /
    • 2003
  • Although debates still exist whether Helicobacter pylori infection is really class I carcinogen or not, H. pylori has been known to provoke precancerous lesions like gastric adenoma and chronic atrophic gastritis with intestinal metaplasia as well as gastric cancer. Chronic persistent, uncontrolled gastric inflammations are possible basis for ensuing gastric carcinogenesis and H. pylori infection increased COX-2 expressions, which might be the one of the mechanisms leading to gastric cancer. To know the implication of long-term treatment of antiinflammatory drugs, rebamipide or nimesulide, on H. pylori-associated gastric carcinogenesis, we infected C57BL/6 mice with H. pylori, especially after MNU administration to promote carcinogenesis and the effects of the long-term administration of rebamipide or nimesulide were evaluated. C57BL/6 mice were sacrificed 50 weeks after H. pylori infection. Colonization rates of H. pylori, degree of gastric inflammation and other pathological changes including atrophic gastritis and metaplasia, serum levels and mRNA transcripts of various mouse cytokines and chemokines, and NF-${\kappa}B$ binding activities, and finally the presence of gastric adenocarcinoma were compared between H. pylori infected group (HP), and H. pylori infected group administered with long-term rebamipide containing pellet diets (HPR) or nimesulide mixed pellets (HPN). Gastric mucosal expressions of ICAM-1, HCAM, MMP, and transcriptional regulations of NF-${\kappa}B$ binding were all significantly decreased in HPR group than in HP group. Multi-probe RNase protection assay showed the significantly decreased mRNA levels of apoptosis related genes and various cytokines genes like IFN-$\gamma$, RANTES, TNF-$\alpha$, TNFR p75, IL-$1{\beta}$ in HPR group. In the experiment designed to provoke gastric cancer through MNU treatment with H. pylori infection, the incidence of gastric carcinoma was not changed between HP and HPR group, but significantly decreased in HPN group, suggesting the chemoprevention of H. pylori-associated gastric carcinogenesis by COX-2 inhibition. Long-term administration of antiinflammatory drugs should be considered in the treatment of H. pylori since they showed the molecular and biologic advantages with possible chemopreventive effect against H. pylori-associated gastric carcinogenesis. If the final concrete proof showing the causal relationship between H. pylori infection and gastric carcinogenesis could be obtained, that will shed new light on chemoprevention of gastric cancer, that is, that gastric/cancer could be prevented through either the eradication of H. pylori or lessening the inflammation provoked by H. pylori infection in high risk group.