• Title/Summary/Keyword: Universe

Search Result 962, Processing Time 0.026 seconds

Search for Faint Quasars at z~5 using Medium-band Observations

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee;Jeon, Yiseul;Ji, Tae-Geun;Byeon, Seoyeon;Park, Woojin;Ahn, Hojae;Taak, Yoon Chan;Kim, Sophia;lim, Gu;Hwang, Sungyong;Paek, Insu;Paek, Gregory;Kim, Minjin;Kim, Dohyeong;Kim, Jae-Woo;Yoon, Yongmin;Choi, Changsu;Hong, Jueun;Jun, Hyunsung David;Karouzos, Marios;Kim, Duho;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.36.2-36.2
    • /
    • 2018
  • Cosmic reionization era in the early universe was playing a leading part on making the present universe we know. However, we have not been able to reveal the main contributor to the cosmic reionization to date. Faint quasars have been mentioned as the alternative due to the uncertainty of the faint end slope of the quasars luminosity function. With the availability of the deep (~25mag) images from Subaru Hyper Suprime-Cam (HSC) Strategic Program survey, we have tried to find more quasar with low luminosity in the ELAIS-N1 field. Faint quasar candidates were selected from several multi-band color cut criteria based on the track of the simulated quasar at z ~ 5. The Infrared Medium-deep Survey (IMS) and The UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep Extragalactic Survey (DXS) provide J band information which is used to cover the relatively long wavelength range of quasar spectra. To search the reliable candidates with possible Lyman break, medium-band observation was performed by the SED camera for QUasars in EArly uNiverse(SQUEAN) in the McDonald observatory and Seoul National University 4k Camera(SNUCAM) in the Maidanak observatory. Photometric redshifts of the observed candidates were estimated from chi-square minimization. Also, we predicted the importance of the faint quasar to the cosmic reionization from the expected number density of the faint quasar.

  • PDF

The Spatially Closed Universe

  • Park, Chan-Gyung
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.353-381
    • /
    • 2019
  • The general world model for homogeneous and isotropic universe has been proposed. For this purpose, we introduce a global and fiducial system of reference (world reference frame) constructed on a (4+1)-dimensional space-time, and assume that the universe is spatially a 3-dimensional hypersurface embedded in the 4-dimensional space. The simultaneity for the entire universe has been specified by the global time coordinate. We define the line element as the separation between two neighboring events on the expanding universe that are distinct in space and time, as viewed in the world reference frame. The information that determines the kinematics of the geometry of the universe such as size and expansion rate has been included in the new metric. The Einstein's field equations with the new metric imply that closed, flat, and open universes are filled with positive, zero, and negative energy, respectively. The curvature of the universe is determined by the sign of mean energy density. We have demonstrated that the flat universe is empty and stationary, equivalent to the Minkowski space-time, and that the universe with positive energy density is always spatially closed and finite. In the closed universe, the proper time of a comoving observer does not elapse uniformly as judged in the world reference frame, in which both cosmic expansion and time-varying light speeds cannot exceed the limiting speed of the special relativity. We have also reconstructed cosmic evolution histories of the closed world models that are consistent with recent astronomical observations, and derived useful formulas such as energy-momentum relation of particles, redshift, total energy in the universe, cosmic distance and time scales, and so forth. The notable feature of the spatially closed universe is that the universe started from a non-singular point in the sense that physical quantities have finite values at the initial time as judged in the world reference frame. It has also been shown that the inflation with positive acceleration at the earliest epoch is improbable.

Discovery of a Faint Quasar at z ~ 6 and Implications for Cosmic Reionization

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Choi, Changsu;Hong, Jueun;Hyun, Minhee;Jun, Hyunsung David;Karouzos, Marios;Kim, Dohyeong;Kim, Duho;Kim, Jae-Woo;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee;Taak, Yoon Chan;Yoon, Yongmin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.37.3-38
    • /
    • 2016
  • Recent studies suggest that faint active galactic nuclei may be responsible for the reionization of the universe. Confirmation of this scenario requires spectroscopic identification of faint quasars ($M_{1450}$ > -24 mag) at z > 6, but only a very small number of such quasars have been spectroscopically identified so far. Here, we report the discovery of a faint quasar IMS J220417.92+011144.8 at z ~ 6 in a $12.5deg^2$ region of the SA22 field of the Infrared Medium-deep Survey (IMS). The spectrum of the quasar shows a sharp break at ${\sim}8443{\AA}$, with emission lines redshifted to $z=5.944{\pm}0.002$ and rest-frame ultraviolet continuum magnitude $M_{1450}=-23.59{\pm}0.10$ AB mag. The discovery of IMS J220417.92+011144.8 is consistent with the expected number of quasars at z ~6 estimated from quasar luminosity functions based on previous observations of spectroscopically identified low-luminosity quasars. This suggest that the number of $M_{1450}$ ~ -23 mag quasars at z ~ 6 may not be high enough to fully account for the reionization of the universe. In addition, our study demonstrates that faint quasars in the early universe can be identified effectively with a moderately wide and deep near-infrared survey such as the IMS.

  • PDF

A Study of 10th Grade Students' Perception about the Universe and its Affecting Factors (고등학교 1학년 학생들의 우주에 대한 인식 및 이에 영향을 준 요소에 대한 연구)

  • Lee, Jin-Hee;Choe, Seoung-Urn
    • Journal of the Korean earth science society
    • /
    • v.31 no.2
    • /
    • pp.151-163
    • /
    • 2010
  • In this study, 10th grade students' views about the universe were surveyed and its affecting factors were investigated. Results showed that when hearing the word of 'the universe', 10th grade students considered it as 'a physical space'. Many students used 'feeling', or 'unknown space' to explain. When they portrayed the universe, many of them described it as a solar system scale. About the center and spatial limit of the universe, most students explained with the view of a heliocentric, geocentric or non-centered universe. Many students explained that the universe changed along with a direction as a physical space. These results were investigated again in different groups in terms of gender, beliefs, and familiarity with astronomy. As a result, students' models about the center, spatial limit, and the variation of the universe were different in the groups. Explanation of the origin of the universe was affected by the religious belief. Results showed that personal views of the universe are various, and many factors influence their views.

WIDE-FIELD IMAGING WITH MOSAIC CCD CAMERAS

  • OKAMURA S.;DOI M.;KAWASAKI W.;KOMIYAMA Y.;SHIMASAKU K.;YAGI M.;YASUDA N.;KASHIKAWA N.;SEKIGUCHI M.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.375-378
    • /
    • 1996
  • An outline is given of our development of mosaic CCD cameras. Hardware and data reduction software of two operational cameras are described. Scientific objectives of wide-field imaging with the cameras are briefly described.

  • PDF

Plasma, the First State of the Universe (우주 최초의 물질상태 - 플라즈마)

  • Lee, Hae June
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.4-8
    • /
    • 2014
  • On this earth, we usually encounter three states of matter: solid, liquid, and gas. Those are the states we experience directly and most often in everyday life. However, if we consider the whole universe, more than 99.99 percent of our visible universe is in plasma state. The earth is in very unusual situation in the universe, and it is great virtue to whole creatures on this planet. In the beginning of the universe, however, there was only plasma. The other stuff came later after then. The Big Bang, beginning of our universe, was dominated by high-temperature plasma. It is where we all came from, and it continues to play a major role not only in our universe but also in various industrial applications of human being.

Testing the Curvature of the Universe

  • L'Huillier, Benjamin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.58.4-58.4
    • /
    • 2019
  • In a homogeneous and isotropic universe, the solution to the Einstein Field equation is the Friedmann-Robertson-Lemaître-Walker metric, which describes an expanding Universe with spatial curvature. The curvature has profound implications, in particular regarding the early universe. In this talk, I will review the state-of-the-arts constraints on the spatial curvature of the Universe using different cosmological observations. In particular, I will focus on model-independent tests using baryon acoustic oscillations and supernovae.

  • PDF

INTENSIVE MONITORING SURVEY OF NEARBY GALAXIES (IMSNG)

  • Im, Myungshin;Choi, Changsu;Hwang, Sungyong;Lim, Gu;Kim, Joonho;Kim, Sophia;Paek, Gregory S.H.;Lee, Sang-Yun;Yoon, Sung-Chul;Jung, Hyunjin;Sung, Hyun-Il;Jeon, Yeong-beom;Ehgamberdiev, Shuhrat;Burhonov, Otabek;Milzaqulov, Davron;Parmonov, Omon;Lee, Sang Gak;Kang, Wonseok;Kim, Taewoo;Kwon, Sun-gill;Pak, Soojong;Ji, Tae-Geun;Lee, Hye-In;Park, Woojin;Ahn, Hojae;Byeon, Seoyeon;Han, Jimin;Gibson, Coyne;Wheeler, J. Craig;Kuehne, John;Johns-Krull, Chris;Marshall, Jennifer;Hyun, Minhee;Lee, Seong-Kook J.;Kim, Yongjung;Yoon, Yongmin;Paek, Insu;Shin, Suhyun;Taak, Yoon Chan;Kang, Juhyung;Choi, Seoyeon;Jeong, Mankeun;Jung, Moo-Keon;Kim, Hwara;Kim, Jisu;Lee, Dayae;Park, Bomi;Park, Keunwoo;O, Seong A
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.1
    • /
    • pp.11-21
    • /
    • 2019
  • Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with $M_{NUV}$ < -18.4 AB mag and have high probabilities of hosting SNe ($0.06SN\;yr^{-1}$ per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R ~ 19.5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as $0.1R_{\odot}$. The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fields (16 in IMSNG galaxies) over 5 years, confirming our SN rate estimate of $0.06SN\;yr^{-1}$ per galaxy.

Are Quasars Growing Fast in the Early Universe?: The Lowest Eddington Ratio Quasar at z~6

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Hyun, Minhee;Kim, Dohyeong;Kim, Jae-Woo;Taak, Yoon Chan;Yoon, Yongmin;Choi, Changsu;Hong, Jueun;Jun, Hyunsung David;Karouzos, Marios;Kim, Duho;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.44.3-45
    • /
    • 2017
  • To date, luminous quasars at z ~ 6 have been found to be in maximal accretion with the Eddington ratios, ${\lambda}Edd$ ~ 1, suggesting enhanced nuclear activities in the early universe. However, this may not be the whole picture of supermassive black hole (SMBH) growth since previous studies have not reached on faint quasars that are more likely to harbor SMBHs with low ${\lambda}Edd$. To understand the accretion activities in quasars at high redshift, we obtained the deep near-infrared (NIR) spectrum of a quasar, IMS J2204+0112, one of the few faintest quasars that have been identified at z ~ 6. From the NIR spectrum, we find that IMS J2204+0112 harbors a SMBH with about a billion solar mass, with ${\log}({\lambda}Edd)=-0.91$. This is the lowest accretion rate found so far for quasars at z ~ 6, but a common value among quasars at z ~ 2. The inclusion of this object in the ${\lambda}Edd$ analysis gives the intrinsic ${\lambda}Edd$ distribution of z ~ 6 quasars, which is lower than previous results that are based on bright quasars, but it is still higher than ${\lambda}Edd$ of z ~ 2 quasars. Although the number statistics needs to be improved in future, the low peak ${\lambda}Edd$ value is consistent with the SMBH growth from a massive black hole seed (~ 105 Msun) or from a stellar mass black hole through short-duration super-Eddington accretion events (${\lambda}Edd$ > 10).

  • PDF

Faint Quasar Candidates at z~5 in the ELAIS-N1 field

  • Shin, Suhyun;Im, Myungshin;Kim, Yongjung;Hyun, Minhee;Jeon, Yiseul;Kim, Minjin;Kim, Dohyeong;Kim, Jae-Woo;Taak, Yoon Chan;Yoon, Yongmin;Choi, Changsu;Hong, Jueun;Jun, Hyunsung David;Karouzos, Marios;Kim, Duho;Kim, Ji Hoon;Lee, Seong-Kook;Pak, Soojong;Park, Won-Kee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2017
  • Faint quasars are important to test the possibility that quasars are the main contributor to the cosmic reionization. However, it has been difficult to find faint quasars due to the lack of deep, wide-field imaging data. In this poster, we present our efforts to find faint quasars in the ELAIS-N1 field through the deep data (iAB ~ 25) obtained by the Subaru Hyper Suprime-Cam (HSC) Strategic Program survey. To select reliable quasar candidate, we also use the near-infrared (NIR) data of the Infrared Medium-deep Survey (IMS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep Extragalactic Survey (DXS). Using multiple-band color cuts, we select high redshift quasar candidates. To confirm them as high redshift quasars, candidates are observed by the SED camera for QUasars in EArly uNiverse (SQUEAN) instrument in several medium band filters that can sample the redshifted Lyman break efficiency. The quasar sample will be used to study the growth of BH and stellar mass, the relation between the quasar activity and the host galaxy, and their contribution to the cosmic re-ionization.

  • PDF