• Title/Summary/Keyword: Universal adhesive

Search Result 237, Processing Time 0.03 seconds

Shear bond strength of metal orthodontic brackets bonded with Self-Etching Primer (Self-etching primer를 이용하여 접착된 교정용 브라켓의 전단결합강도)

  • Ahn, Yun-Pyo;Kim, Hyo-Young;Jeon, Young-Mi;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.33 no.1 s.96
    • /
    • pp.51-61
    • /
    • 2003
  • The purpose of this study was to evaluate the effects of a self-etching primer on the shear bond strength of orthodontic brackets and on the failure pattern of bracket-adhesive interfaces in dry or wet condition. Brackets were bonded to extracted human teeth according to one of three experimental protocols. In the Group P, teeth were etched with $37\%$ phosphoric acid. After the Transbond XT Primer was applied onto the etched surfaces, the brackets were bonded with Transbond XT(3M, Unitek, Monrovia, Calif) and light cured for 40 seconds. In the Group SD, a self-etching primer(3M, Unitek, Monrovia, Calif) was placed on the enamel for 3 seconds and gently evaporated with air, as suggested by the manufacturer. The brackets were then bonded with Transbond XT as in the Group P In the Group SW, artificial saliva was applied to the enamel surface for 10 seconds to allow complete hydration of the surface before application self-etching primer The brackets were then bonded following the procedures of Group SD. Each group was divided into 2 sub-groups(0.5h, 24h) according to debonding time. Shear bond strengths were measured by Instron universal testing machine. After debonding, the teeth and brackets were examined under scanning electron microscope and assessed with the adhesive remnant index. The result obtained were summarized as follows ; 1. The shear bond strengths were high enough to use clinically in all testing groups, but the shear bond strengths of Group SD and SW were significantly lower than Group P(p<0.05). 2. With respect to comparison of debonding time, 24h debonding samples exhibited heigher shear bond strength than 0.5h debonding samples in Group P, SD and SW(p<0.05). 3. In the self etching primer groups(Group SD and Group SW), there was no significant difference in mean shear bond strength between under dry and wet state(p>0.05). 4. There was a greater frequency of ARI score of 0 and 1 with the Group P. On the other hand, there was a higher frequency of ARI scores of 2 and 3 with Group SD and Group SW(p<0.05).

Comparison of shear, tensile and shear/tensile combined bonding strengths in bracket base configurations (브라켓 기저부 형태에 따른 전단, 인장, 전단/인장복합결합강도의 비교)

  • Lee, Choon-Bong;Lee, Seong-Ho;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.29 no.5 s.76
    • /
    • pp.599-611
    • /
    • 1999
  • The purpose of this study was to evaluate shear, tensile and shear/tensile combined bond strengths(SBS, TBS, S/TBS) in various orthodontic brackets bonded to human teeth with chemically cured adhesive (Ortho-one, Bisco, USA). Five types of metal brackets with various bracket base configurations (Micro-Loc base(Tomy, Japan), Chessboard base(Daesung, Korea), Non-Etched Foil Mesh base(Dentarum, Germany), Micro-Etched Foil Mesh base(Ortho Organiners, USA), Integral base(Unitek, USA)) were used in this study. Shear, tensile and shear/tensile combined bond strengths according to the direction of force were measured by universal testing machine. The bracket base surface after bond strength test were examined by stereoscope and scanning electron microscope. The assessment of resin remnant on bracket base surface was carried out by ARI(adhesive remnant index). The results obtained were summarized as follows, 1. In all brackets, SBS was in the greatest value(p<0.05), TBS was in 50% level and S/TBS was in 30% level of SBS. 2. In bond strength, Micro-Loc base bracket showed the maximum bond strength($SBS:22.86{\pm}1.37kgf,\;TBS:11.37{\pm}0.42kgf,\;S/TBS:6.69{\pm}0.34kgf$) and Integral base bracket showed the minimum bond strength($SBS:10.52{\pm}1.27kgf,\;TBS:4.27{\pm}1.08kgf,\;S/TBS:2.94{\pm}0.58kgf) (p<0.05). 3. In bond strength per unit area, Integral base bracket showed the minimum value, Micro-Loc base and Chessboard base brackets were in similar value(p>0.05). Non-Etched Foil Mesh base and Micro-Etched Foil Mesh base bracket were similar in SBS and TBS(p>0.05), but Micro-Etched Foil Mesh base bracket was greater than Non-Etched Foil Mesh base bracket in S/TBS(p<0.05). 4. Bond failure sites were mainly between bracket base and adhesive, therefore ARI scores were low.

  • PDF

Shear bond strength of ceramic and resin brackets used with visible light-cured adhesives (도재 및 레진 브라켓에 대한 광중합 접착제의 전단 접착 강도)

  • Hwang, Yu-Sun;Row, Joon;Hwaang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.233-244
    • /
    • 1996
  • The purpose of this study was to compare the shear bond strength obtained from ceramic and plastic brackets bonded with various light-cured adhesives and to evaluate their debonded failure sites. Plastic brackets, Transcend 6000, Signature and Starflre TMB brackets were bonded with Orthobond, Light Bond and Transbond on one hundred forty extracted human premolar teeth as manufacturer's descriptions. After thermocycling the brackets were debonded with an Instron universal testing machine and the debonded bracket base surfaces were inspected under stereoscope to evaluate the failure sites. Also the shear bond strength and failure patterns with different curing time and with two different source of light were compared. The results were as follows. 1. There were no statistically significant differences among the mean shear bond strength of Orthobond, Light Bond and Transbond in a same bracket group except Plastic bracket group(p<0.05). 2. The mean shear bond strength of each adhesive with different bracket groups showed statistically significant differences. Stafire TMB showed the highest shear bond strenght among the brackets in this study, but there was no statistically singnificant difference with Transcend 6000 while there was statistically significant difference with Signature.(p<0.05) 3. The various bonding failure patterns were occurred among different bracket groups but most of failure sites were bracket base -adhesive interfaces. 4. There were no statistically significant differences in shear bond strength between the groups with curing time of 10 second and 20 second, and between the groups with two different sources of light as long as sufficient light intensity(above $400mWcm^2$) were provided(p<0.05). According to the result, it should be considered in clinical use of ceramic bracket with light-cured adhesives that the shear strengths of ceramic brackets were influenced by the retention from of bracket base as well as the composition of bracket and there was no difference in the shear bond strenght among various light-cured adhesives used in this study.

  • PDF

MARGINAL MICROLEAKAGE AND SHEAR BOND STRENGTH OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF ARTIFICIAL SALIVA-CONTAMINATED SURFACE AFTER PRIMING (접착강화제 도포후 인공타액에 오염된 표면의 처리방법에 따른 복합레진의 번연누출과 전단결합강도)

  • Cho, Young-Gon;Ko, Kee-Jong;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • During bonding procedure of composite resin, the prepared cavity can be contaminated by saliva. In this study, marginal microleakage and shear bond strength of a composite resin to primed enamel and dentin treated with artificial saliva(Taliva$^{(R)}$) were evaluated. For the marginal microleakage test, Class V cavities were prepared in the buccal surfaces of fifty molars. The samples were randomly assigned into 5 groups with 10 samples in each group. Control group was applied with a bonding system (Scotchbond$^{TM}$ Multi-Purpose plus) according to manufacture's directions without saliva contamination. Experimental groups were divided into 4 groups and contaminated with artificial saliva for 30 seconds after priming: Experimental 1 group ; artificial saliva was dried with compressed air only, Experimental 2 group ; artificial saliva was rinsed and dried. Experimental 3 group ; cavities were etched with 35% phosphoric acid for 15 seconds after rinsing and drying artificial saliva. Experimental 4 group ; cavities were etched with 35% phosphoric acid for 15 seconds and primer was reapplied after rinsing and drying artificial saliva. All the cavities were applied a bonding agent and filled with a composite resin (Z-100$^{TM}$). Specimens were immersed in 0.5% basic fuschin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from one specimen. Degree of marginal leakage was scored under stereomicroscope and their scores were averaged from four sections. The data were analyzed by Kruscal-Wallis test and Fisher's LSD. For the shear bond strength test, the buccal or occlusal surfaces of one hundred molar teeth were ground to expose enamel(n=50) or dentin(n=50) using diamond wheel saw and its surface was smoothed with Lapping and Polishing Machine(South Bay Technology Co., U.S.A.). Samples were divided into 5 groups. Treatment of saliva-contaminated enamel and dentin surfaces was same as the marginal microleakage test and composite resin was bonded via a gelatin capsule. All specimens were stored in distilled water for 48 hours. The shear bond strengths were measured by universal testing machine (AGS-1000 4D, Shimaduzu Co., Japan) with a crosshead speed of 5 mm/minute. Failure mode of fracture sites was examined under stereomicroscope. The data were analyzed by ANOVA and Tukey's studentized range test. The results of this study were as follows : 1. Enamel marginal microleakage showed no significant difference among groups. 2. Dentinal marginal microleakages of control, experimental 2 and 4 groups were lower than those of experimental 1 and 3 groups (p<0.05). 3. The shear bond strength to enamel was the highest value in control group (20.03${\pm}$4.47MPa) and the lowest value in experimental 1 group (13.28${\pm}$6.52MPa). There were significant differences between experimental 1 group and other groups (p<0.05). 4. The shear bond strength to dentin was higher in control group (17.87${\pm}$4.02MPa) and experimental 4 group (16.38${\pm}$3.23MPa) than in other groups, its value was low in experimental 1 group (3.95${\pm}$2.51 MPa) and experimental 2 group (6.72${\pm}$2.26MPa)(p<0.05). 5. Failure mode of fractured site on the enamel showed mostly adhesive failures in experimental 1 and 3 groups. 6. Failure mode of fractured site on the dentin did not show adhesive failures in control group, but showed mostly adhesive failure in experimental groups. As a summary of above results, if the primed tooth surface was contaminated with artificial saliva, primer should be reapplied after re-etching it.

  • PDF

THE BONDING DURABILITY OF RESIN CEMENTS (레진시멘트의 접착 내구성에 관한 연구)

  • Cho, Min-Woo;Park, Sang-Hyuk;Kim, Jong-Ryul;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.343-355
    • /
    • 2007
  • The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.

COMPARATIVE ENAMEL BOND STRENGTH BETWEEN LIGHT-AND DUAL-CURED COMPOSITES BONDED BY SELF-ETCHING ADHESIVES (자가 산부식 접착제로 접착된 광중합과 이원중합 복합레진의 법랑질 결합강도 비교)

  • Cho, Young-Gon;Yoo, Sang-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • This study compared the microshear bond strength (${\mu}SBS$) of light-cured and dual-cured composites to enamel bonded with three self-etching adhesives. Crown segments of extracted human molars were cut mesiodistally, and 1 mm thickness of specimen was made. They were assigned to three groups by used adhesives: Xeno group (Xeno III), Adper group (Adper Prompt L-Pop), and AQ group (AQ Bond). Each adhesive was applied to cut enamel surface as per manufacturer's instruction. Light-cured (Filtek Z 250) or dual-cured composite (Luxacore) was bonded to enamel of each specimen using Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The mean ${\mu}SBS$ (n = 20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at the 0.05 probability level, The results of this study were as follows ; 1. The ${\mu}SBS$ of light-cured composite was significantly higher than that of dual-cured composite when same adhesive was applied to enamel. 2. For Z 250, the ${\mu}SBS$ of AQ group ($9.95{\pm}2.51 MPa$) to enamel was significantly higher than that of Adper soup ($6.74{\pm}1.80 MPa$), but not significantly different with Xeno group ($7.73{\pm}2.01 MPa$). 3. For Luxacore, the ${\mu}SBS$ of Xeno group ($5.19{\pm}1.32\;MPa$) to enamel was significantly higher than that of Adper group ($3.41{\pm}1.19\;MPa$), but not significantly different with AQ group ($4.50{\pm}0.96\;MPa$).

THE EFFECT OF LIGHT CURED GLASS IONOMER CEMENT ON THE SHEAR BOND STRENGTH OF ORTHODONTIC BRACKETS (광중합형 글래스 아이오노머 시멘트 교정용 브라켓의 전단결합강도에 미치는 영향)

  • Kim, Cheol;Yoon, Young-Jooh;Kim, Kwng-Won
    • The korean journal of orthodontics
    • /
    • v.27 no.2
    • /
    • pp.327-334
    • /
    • 1997
  • The purpose of this study was to evaluate clinical applicability of light cured glass ionomer cement as a othodontic adhesive. The metal brackets and plastic brackets were bonded with light cured glass ionomer cement(Fuji Ortho $LS^{(R)}$) after polishing with a slurry of pumice, surface conditioning with 10% polyacrylic acid and chemically cured resin(Mono-$Lok2^{(R)}$) after acid etching with 38% phosphoric acid on the extracted human bicuspids. The shear bond strength was tested with a universal testing machine(HGS-100A, Shimadzu Co., Japan) after storage in normal saline at $37^{\circ}C$ or 24 hours and 48 hours. The results were as follows: 1. The shear bond strength of light cured glass ionomer cement group polished with a slurry of pumice was significantly lower than that of chemically cured resin group(P<0.01). 2. The shear bond strength of light cured glass ionomer cement group conditioned with 10% polyacrylic acid was significantly lower than that of chemically cured resin group(P<0.01). 3. The shear bond strength of light cued glass ionorner cement group conditioned with 10% polyacrylic acid was slightly higher than that of light cured glass ionomer cement group polished with a slurry of pumice, but there was no significant difference(P>0.05). 4. There was no significant difference between metal bracket group and plastic bracket group irrelevant off enamel conditioning(P>005). In summary, although the shear bond strength of light cured glass lionomer cement was lower than that of chemically cured resin, it night be clinically applicable.

  • PDF

A COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF DICOR AND G-CERA PORCELAIN LAMINATE VENEER (DICOR와 G-CERA PORCELAIN LAMINATE VENEER의 전단결합강도에 관한 비교연구)

  • Cho Mi-Sook;Yang Jae-Ho;Lee Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.33-41
    • /
    • 1991
  • Cermic has been widely used because of its excellent esthetics and strength. The recently introduced castable ceramic system is regarded as the more esthetic and biocompatible restorative material. The purpose of this study was to compare the shear bond strength of Dicer & G-Cera porcelain laminate veneer according to the type of cement and surface treatment and to observe the surface of bonding failure with SEM. Total forty disks(3.5mm $diam.\times2.0mm$ thickness) were prepared. Forty extracted human maxillary central incisor teeth were stored in saline solution. Ten teeth were bonded to Dicer specimen with Dicer ZPC cement and ten teeth were bonded with Dicer resin cement. Ten silicoated G-Cera specimen and ten non-silicoated G-Cera specimen were bonded to teeth with G-Cera resin cement. Bonded units were mounted in a plastic tube with hard stone and stored in a humidor at $37^{\circ}C$ for 24 hours. Shear bond strength was measured by Instron Universal Testing Machine (Model 1125) and all the specimen were observed with SEM(JEOL, JSM-T2000)and modes of failure were recorded. The obtained results were as follows: 1. The mean shear bond strength of Dicer bonded with Dicer resin cement was 11.62 MPa and that bonded with Dicor ZPC cement was 0.88 MPa : Shear bond strength of Dicer bonded with Dicer resin cement was significantly increased(P<0.05). 2. The mean shear bond strength of silicoated G-Cera was 13.10 MPa and that of non silicoated G-Cera was 10.93 MPa : Shear bond strength of silicoated G-Cera was not significantly increased (P>0.05). 3. Shear bond strength of Dicer and G-Cera porcelain laminate veneer was not significantly different (P>0.05). 4. In observation of bond failure with SEM, Dicer bonded with Dicer ZPC cement exhibited adhesive failure. Dicer bonded with Dicer resin cement and silicoated and non silicoated G-Cera exhibited cohesive failure.

  • PDF

EFFECTS OF METAL SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN NI-CR DENTURE BASE AND RELINE RESINS (금속 표면처리방법이 니켈-크롬 합금 의치상과 첨상레진간의 결합강도에 미치는 영향)

  • Kim Young-Il;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.396-405
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of four metal surface treatments on the shear bond strength of reline resin to Ni-Cr alloy. The denture base metal used in this study was Ni-Cr alloy(Ticonium Premium 100. Ticonium Co., U.S.A.). 120 specimens were divided into five metal surface treatments: sandblasting only, MR. BOND(Tokuyama Corp.. Japan), Cesead Opaque Primer(Kuraray Co., Japan), METALPRIMER II(GC Corp., Japan) and Super-Bond C&B(Sun Medical Co., Japan) after sandblasting. They were bonded with one of three reline resins Mild Rebaron(GC Corp., Japan), Mild Rebaron LC(GC Corp., Japan) and Meta Base M(Sun Medical Co., Japan). Then they were thermocycled 1,000 times at temperature of $4^{\circ}C$ and $60^{\circ}C$. The shear bond strengths were measured using the universal testing machine(Instron, Model 4301, England) with a cross-head speed of 2 mm/min. The results were as follows : 1. All metal primers and adhesive cement significantly improved the bond strength of reline resin to Ni-Cr alloy compared with sandblasted specimens. 2. In Mild Rebaron and Mild Rebaron LC. Cesead Opaque Primer showed the highest bond strength, but the differences among Cesead Opaque Primer, MR. BOND and METALPRIMER II were not significant. The bond strength of Cesead Opaque Primer was significantly different with that of Super-Bond C&B. 3. In Meta Base M, Super-Bond C&B showed the highest bond strength, but there was no difference between Super-Bond C&B and three metal primers. 4. There was no difference in the bond strength between Mild Rebaron and Mild Rebaron LC when metal surface was treated with the same method. 5. The bond strengths of Mild Rebaron and Mild Rebaron LC treated with Cesead Opaque Primer were higher than that of Meta Base M. The bond strengths of Mild Rebaron treated with MR. BOND and METALPRIMER II was higher than that of Meta Base M, However, there was no difference among three reline resins treated with Super-Bond C&B.

SHEAR BOND STRENGTH OF GIOMER AND SELF-ETCHING PRIMER ON THE DENTIN (Giomer와 자가 산부식 접착제의 상아질에 대한 전단 결합강도)

  • Yoon, Eun-Young;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.422-428
    • /
    • 2010
  • Giomer is fluoride-releasing, resin-based dental materials that comprise PRG(pre-reacted glass ionomer) filler. The purpose of this study was to evaluate the shear bond strength of Giomer using self-etching primer systems to bovine dentin. Bovine incisors were mounted in self-curing orthodontic resin and the facial surfaces were wet ground on SIC paper to expose the dentin. Total 100 samples were made and divided randomly into 4 groups, Giomer group(I), Composite resin group(II) and Compomer group(III), Giomer and single bottle adhesive group(IV). The shear bond strengths of 25 samples per each group were measured using universal testing machine. And data were analyzed statistically with One-way ANOVA and Scheffe test. Giomer group(I) showed the significantly higher bond strength than Compomer group(III)(p<0.05). There was no significant difference between Giomer group(I) and Composite resin group(II)(p>0.05). And there is no significant difference between gourp(I) and group(IV). Based on the results of present study, the use of Giomer as an esthetic restorative material for primary teeth might be justified. It is considered that more study about the fluoride releasing ability is needed to evaluate the anticariogenic effect of giomer.