• Title/Summary/Keyword: Unity power factor

Search Result 326, Processing Time 0.032 seconds

Development of control algorithm for TTX Tilting Train eXpress propulsion system (틸팅 차량용 추진제어장치의 제어 알고리즘 개발)

  • Kim, Hyung-Cheol;Lee, Eun-Kyu;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1343-1345
    • /
    • 2005
  • In this paper, control schemes are proposed for a propulsion system(Converter/Inverter) of the TTX(Tilting Train express). In developed traction converter, unity power factor control, compensation method of dc link voltage have been applied. Output current of converter contains harmonics ripple at twice input ac line frequency, which causes a ripple in the dc link voltage so that control scheme is developed in inverter system to reduce the pulsating torque current. At low speed region, vector control scheme is applied and slip frequency control is adopted at high speed region. The performance of propulsion system will be verified by simulation and prototype experimental results.

  • PDF

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.

A Novel Utility AC Frequency to High Frequency AC Power Converter with Boosted Half-Bridge Single Stage Circuit Arrangement

  • Saha, Bishwajit;Kwon, Soon-Kurl;Koh, Hee-Seog;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.387-390
    • /
    • 2006
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit Incorporating boost-half-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switching mode and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft switching (ZVS) operation ranges and the power dissipation as compared with those of the previously developed high-frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation (PWM) and pulse density modulation (PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

  • PDF

Improved instantaneous Following Control Function for High Power Factor PWM Matrix Converter (고역율 PWM 매트릭스 컨버터의 개선된 순시추종 제어함수)

  • Kim, Kwang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.35-43
    • /
    • 2005
  • Matrix converters have been studied for eliminating dc link of conventional converter-inverter system, and various undulation strategy have been proposed. Therefore, matrix converter have no energy storage component except for small ac later for the elimination of switching ripple, and can be made compact and highly reliable compare with the do link inverter system. Matrix converter, however, directly connected the input and the output terminals by bidirectional static switch. As a result if the input voltage are asymmetrical, and contain harmonics, the influence of the distortions directly appear on the output terminal. This problem is a major obstacle to the matrix converter. A new control method using average comparison strategy have been proposed in this paper. This control method realizes sinusoidal input and output current unity input displacement factor regardless of load power factor. Moreover, compensation of the asymmetrical and/or harmonic containing input voltage is automatically realized, and calculation time of control function is reduced.

Analytical Study on Improvement in Load Sharing for Planetary Gear Set using Floating Ring Gear

  • Chung, Woo-Jin;Choi, Kyujeong;Oh, Jooseon;Park, Young-Jun;Lee, Ki-Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.263-272
    • /
    • 2018
  • Purpose: The load on the planet gear of a planetary gear set is uniformly distributed. However, manufacturing and assembly errors cause uneven load sharing in the planetary gear set. To solve this problem, most studies have suggested applying a floating sun gear to the planetary gear set. However, the effect of the floating ring gear and floating carrier has not been extensively studied. This study aimed to investigate the effect of the floating ring gear. Methods: Two models were developed; one was the fixed ring gear model, and the other was the floating ring gear model. In the fixed ring gear model, the clearance between the ring gear and the housing was $0{\mu}m$, and in the floating ring gear model, the clearance was from $10{\mu}m$ to $100{\mu}m$. The load sharing of the planetary gear set was evaluated by the load sharing factor. Results: Our study showed that with increase in clearance, the load sharing factor of the planetary gear set approached unity. In addition, when the clearance increased above a certain level by which a fully floating ring gear was achieved, the load sharing factor was not affected by the clearance. Conclusions: This indicates that the fully floating ring gear increased the power density of the planetary gearbox by uniformly dividing the load of the planetary gear set. For this reason, the size of the gearbox could be decreased by using a fully floating ring gear.

A Study on Step Up-Down AC-DC Converter with DCM-ZVS of High Performance (고성능 DCM-ZVS 스텝 업-다운 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • This paper is studied on a new DCM-ZVS step up-down AC-DC converter of high performance, that is, high system efficiency and power factor correction (PFC). The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit uses a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuits and reduces the number of control components. The input AC current waveform in the proposed converter becomes a quasi-sinusoidal waveform proportional to the magnitude of input AC voltage under constant switching frequency. As a result, the proposed converter obtains low switching power loss and high efficiency, and its input power factor is nearly in unity. The validity of the analytical findings is confirmed by some computer simulation results and experimental results.

A Study on The PWM Control of Resonant Inverters (공진형 인버터의 PWM 제어에 관한 연구)

  • Shin, Jae-Hwa;Cho, Kyu-Min;Kim, Young-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • In many applications of power electronics, high frequency resonant inverters are used, and the PAM(Pulse Amplitude Modulation), PFM(Pulse Frequency Modulation) or PWM(Pulse Width Modulation) techniques are used to control the output power of resonant inverters. And the resonant inverters have to control the output frequency for the reliable operation under the variable load conditions. In this paper, a new switching scheme is proposed as a PWM control of resonant inverters. With the proposed method, it can be obtained that optimum resonant frequency and unity output displacement factor under the variable resonant frequency adaptively. The detail algorithm or the proposed PWM switching scheme and its output characteristics are discussed. And the veridity of the proposed method is confirmed with the experimental results.

  • PDF

Robust Control of Current Controlled PWM Rectifiers Using Type-2 Fuzzy Neural Networks for Unity Power Factor Operation

  • Acikgoz, Hakan;Coteli, Resul;Ustundag, Mehmet;Dandil, Besir
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.822-828
    • /
    • 2018
  • AC-DC conversion is a necessary for the systems that require DC source. This conversion has been done via rectifiers based on controlled or uncontrolled semiconductor switches. Advances in the power electronics and microprocessor technologies allowed the use of Pulse Width Modulation (PWM) rectifiers. In this paper, dq-axis current and DC link voltage of three-phase PWM rectifier are controlled by using type-2 fuzzy neural network (T2FNN) controller. For this aim, a simulation model is built by MATLAB/Simulink software. The model is tested under three different operating conditions. The parameters of T2FNN is updated online by using back-propagation algorithm. The results obtained from both T2FNN and Proportional + Integral + Derivate (PID) controller are given for three operating conditions. The results show that three-phase PWM rectifier using T2FNN provides a superior performance under all operating conditions when compared with PID controller.

The Reduction of Common-Mode Voltage in Matrix Converter without Using Zero Space Vector (영상태 벡터를 사용하지 않는 매트릭스 컨버터의 공통모드 전압 저감에 관한 연구)

  • Nguyen, Minh-Hoang;Lee, Hong-Hee;Jung, Eui-Heon;Chun, Tae-Won;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.638-642
    • /
    • 2005
  • This paper proposes a modified space-vector pulse width modulation (PWM) strategy which can restrict the common-mode voltage for three-phase to three-phase matrix converter and still keep sinusoidal input and output waveforms and unity power factor at the input side. The proposed control method has been developed based on contributing the appropriate space vectors instead of using zero space vectors. The advantages of this proposed method is to reduce the peak value of common-mode voltage to 42% beside the lower high harmonic components as compared to the conventional SVM method. Hence, the new table is also presented with the new space vector rearrangement. Furthermore, the voltage transfer ratio is unaffected by the proposed method. A simulation of the overall system has been carried out to validate the advantages of the proposed method.

  • PDF

A Study on 6-pulse-shift Current-source PWM Inverter for Photovoltaic System (태양광발전을 위한 6-pulse-shift 전류형 인버터에 관한 연구)

  • Lim, Joung-Min;Lee, Sang-Hun;Park, Sung-Jun;Moon, Chae-Joo;Chang, Young-Hak;Lee, Man-Hyung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2006
  • This paper suggests a 6-pulse-shift converter structure with PWM current-source inverter based on buck-boost configuration to improve the efficiency and to reduce the switching frequency of inverter for photovoltaic generation system, the device can be operated as interface system between solar module system and power system grid without energy storage cell. The circuit has six current-source buck-boost converter which operate chopper part and kas one full bridge inverter which make a decision the polarity of AC output. Therefore, the proposed PWM power inverter has advantages such as the reduction of witching loss and realization of unity power factor operation. The theoretical backgrounds are discussed and the input-output characteristics for the implemented prototype inverter using TMS320F2812 are verified experimentally in this paper.