• Title/Summary/Keyword: Unit watershed

Search Result 325, Processing Time 0.028 seconds

Development of SWAT SD-HRU Pre-processor Module for Accurate Estimation of Slope and Slope Length of Each HRU Considering Spatial Topographic Characteristics in SWAT (SWAT HRU 단위의 경사도/경사장 산정을 위한 SWAT SD-HRU 전처리 프로세서 모듈 개발)

  • Jang, Wonseok;Yoo, Dongsun;Chung, Il-moon;Kim, Namwon;Jun, Mansig;Park, Younshik;Kim, Jonggun;Lim, Kyoung-Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.351-362
    • /
    • 2009
  • The Soil and Water Assessment Tool (SWAT) model, semi-distributed model, first divides the watershed into multiple subwatersheds, and then extracts the basic computation element, called the Hydrologic Response Unit (HRU). In the process of HRU generation, the spatial information of land use and soil maps within each subwatershed is lost. The SWAT model estimates the HRU topographic data based on the average slope of each subwatershed, and then use this topographic datum for all HRUs within the subwatershed. To improve the SWAT capabilities for various watershed scenarios, the Spatially Distributed-HRU (SD-HRU) pre-processor module was developed in this study to simulate site-specific topographic data. The SD-HRU was applied to the Hae-an watershed, where field slope lengths and slopes are measured for all agricultural fields. The analysis revealed that the SD-HRU pre-processor module needs to be applied in SWAT sediment simulation for accurate analysis of soil erosion and sediment behaviors. If the SD-HRU pre-processor module is not applied in SWAT runs, the other SWAT factors may be over or under estimated, resulting in errors in physical and empirical computation modules although the SWAT estimated flow and sediment values match the measured data reasonably well.

Zoning Hydrologic Units for Geospatial Climatology in North Korea (북한지역의 소기후 추정을 위한 수문단위 설정)

  • Kim, Jin-Hee;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.20-27
    • /
    • 2011
  • High-definition, geo-referenced digital climate maps can be produced by applying watershed-specific modules to adjust synoptic observations for local effects including cold air drainage. Since there is no information available on North Korean watersheds, existing geospatial technology for digital climate mapping cannot be transferred to North Korea. We applied a watershed extraction algorithm based on ArcHydro to the North Korean portion of ASTER GDEM and utilized geographical information on major rivers and mountains to adjust the products. Proposed hydrologic zoning system for North Korean watersheds consists of 21 river basins, 93 stream basins and 885 catchments. Combined with the existing 840 South Korean hydrologic units, we now have a complete set of 1,725 catchments which may serve a framework for digital climate modeling across whole land area of the Korean Peninsula.

Application of the High Resolution Aerial Images to Estimate Nonpoint Pollution Loads in the Unit Load Approach (원단위법에 의한 비점오염부하량 산정 시 토지피복 특성을 반영하는 고해상도 항공영상의 활용방안)

  • Lee, Bum-Yeon;Lee, Chang-Hee;Lee, Su-Woong;Ha, Do
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.281-291
    • /
    • 2009
  • In Total Water Pollutant Load Management System of Korea, unit load approach based on land register data is currently used for the estimation of non-point pollutant load. However, a problem raised that land register data could not always reflect the actual land surface coverages which determine runoff characteristics of non-point pollution sources. As a way to overcome this, we tried to establish quantitative relationships between the aerial images (0.4m resolution) which reflect actual land surface coverages and the land registration maps according to the 19 major designated land-use categories in Kyeongan watershed. Analyses showed different relationships according to the land-use categories. Only a few land-use categories including forestry, road and river showed essentially identical and some categories such as orchard, parking lot and sport utility site showed no relationships at all between image data and land register data. Except for the two cases, all the other categories showed statistically significant linear relationships between image data and land register data. The analyses indicate that using high resolution aerial maps is a better way to estimate non-point pollutant load. If the aerial maps are not available, application of the linear relationships as conversion factors of land register data to image data could be an possible option to estimate non-point pollutant loads for the specific land-use categories in Kyeongan watershed.

Comparison of Artificial Neural Network Model Capability for Runoff Estimation about Activation Functions (활성화 함수에 따른 유출량 산정 인공신경망 모형의 성능 비교)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Yoon, Pureun;Kim, Kwihoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • Analysis of runoff is substantial for effective water management in the watershed. Runoff occurs by reaction of a watershed to the rainfall and has non-linearity and uncertainty due to the complex relation of weather and watershed factors. ANN (Artificial Neural Network), which learns from the data, is one of the machine learning technique known as a proper model to interpret non-linear data. The performance of ANN is affected by the ANN's structure, the number of hidden layer nodes, learning rate, and activation function. Especially, the activation function has a role to deliver the information entered and decides the way of making output. Therefore, It is important to apply appropriate activation functions according to the problem to solve. In this paper, ANN models were constructed to estimate runoff with different activation functions and each model was compared and evaluated. Sigmoid, Hyperbolic tangent, ReLU (Rectified Linear Unit), ELU (Exponential Linear Unit) functions were applied to the hidden layer, and Identity, ReLU, Softplus functions applied to the output layer. The statistical parameters including coefficient of determination, NSE (Nash and Sutcliffe Efficiency), NSEln (modified NSE), and PBIAS (Percent BIAS) were utilized to evaluate the ANN models. From the result, applications of Hyperbolic tangent function and ELU function to the hidden layer and Identity function to the output layer show competent performance rather than other functions which demonstrated the function selection in the ANN structure can affect the performance of ANN.

Applicability Test of UK Design Flood Estimation Model FEH-ReFH to Korean Namcheon Watershed (영국의 설계홍수량 산정모형인 FEH-ReFH의 국내 남천유역 적용성 평가)

  • Kim, Sang-Ho;Ahn, So-Ra;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.68-80
    • /
    • 2013
  • The purpose of this study is to evaluate the applicability of UK design flood estimation model, FEH-ReFH through rainfall-runoff simulation of Korean watershed. For the Nam stream watershed($165.12km^2$), the model was calibrated using 6 storm events. The watershed and hydrological characteristics for the model requirements was prepared by developing input data pre-processors based on open GIS. The parameters of rainfall loss rate and unit hydrograph were calibrated from the observed data. The results can be used for improving and standardizing the Korean design flood estimation method.

Analysis of Scenarios for Environmental Instream Flow Considering Water Quality in Saemangeum Watershed (새만금유역의 수질을 고려한 환경유지용수의 시나리오 분석)

  • Kim, Se-Min;Park, Young-Ki;Won, Chan-Hee;Kim, Min-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.117-127
    • /
    • 2016
  • In this study, analyzed scenarios of the environmental instream flow for water quality improvement in Saemangeum watershed. In order to get an environmental instream flow, Methodology is selected for Retention-Basin, reservoir expansion, new dam construction, Modification of water intake and drainage system, Rearrangement of plan for system which Yongdam and Seomjin river dam have been used water supply. The study composed of diverse scenario of Environmental instream flow increasement and analyzed the effect of improving the water quality by the QUAL2K model and calculation of runoff for saemangeum watershed by SWAT model. The following water quality indicators have been simulated in irrigation and non-irrigation period for BOD and T-P. When scenarios applied to water quality model, Improvement rate in the water quality for Total Maximum Daily loads of Mankyung B unit watershed during irrigation and non-irrigation period is BOD (28.70%), T-P (17.09%) and BOD (28.51%), T-P (28.68%) respectively. Dongjin A unit watershed during irrigation and non-irrigation period is BOD (14.39%), T-P (14.59%) and BOD (15.54%), T-P (19.46%) similary. Simulation results is to quantify the constribution of the improvement in the water quality. In particular, It was demonstrative that improving effect for water quality was evaluated to be great in non-irrigation period.

A Study on Rainfall-Runoff Analysis by Geomorphological Instantaneous Unit Hydrograph (GIUH) (지형학적 순간단위도(GIUH)에 의한 강우-유출해석)

  • Choi, Hung-Sik;Park, Chung-Soo;Moon, Hyung-Geun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.49-58
    • /
    • 2006
  • Rainfall-runoff characteristics are analysed based on the geomorphological instantaneous unit hydrograph(GIUH) derived by geomorphological parameters using geographical information system in watershed ungaged or deficient of field data. Observed data of Seom river experiment watershed at upstream of Hoengseong dam and variable slope method for hydrograph separating of direct non are used. The 4th stream order of Seom river experimental watershed is developed with a regular correlation referred to the Horton-Strahler's law of stream order. The characteristic velocity to determine shape parameter of GIUH is 1.0m/s and its equation is modified for accurate results. Hydrograph at the outlet of 4th stream order of Maeil gage station and at the outlets of 3rd stream order of Sogun and Nonggeori gage stations show a little differences in falling limb of hydrograph but agree well to the observed data in general. The results by hydrological routing with HEC-HMS to the outlet of 4th stream order of Maeil gage station which the hydrograph by GIUH obtained at Sogun and Nonggeori gage stations of 3rd stream oder are applied as upstream inputs give better agreement with observed data than those by hydrograph by GIUH obtained at Maeil gage station of 4th stream order. In general, the rainfall-runoff by GIUH has applicability to the watershed routing of ungaged project regions.

Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria

  • Adeogun, Adeniyu Ganiyu;Ganiyu, Habeeb Oladimeji;Ladokun, Laniyi Laniran;Ibitoye, Biliyamin Adeoye
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.267-273
    • /
    • 2020
  • This Hydrokinetic energy system is the process of extracting energy from rivers, canals and others sources to generate small scale electrical energy for decentralized usage. This study investigates the application of Soil and Water Assessment Tool (SWAT) in Geographical Information System (GIS) environment to evaluate the theoretical hydrokinetic energy potentials of selected Rivers (Asa, Awun and Oyun) all in Asa watershed, Kwara state, Nigeria. SWAT was interfaced with an open source GIS system to predict the flow and other hydrological parameters of the sub-basins. The model was calibrated and validated using observed stream flow data. Calibrated flow results were used in conjunction with other parameters to compute the theoretical hydrokinetic energy potentials of the Rivers. Results showed a good correlation between the observed flow and the simulated flow, indicated by ash Sutcliffe Efficiency (NSE) and R2 of 0.76 and 0.85, respectively for calibration period, and NSE and R2 of 0.70 and 0.74, respectively for the validation period. Also, it was observed that highest potential of 154.82 MW was obtained along River Awun while the lowest potential of 41.63 MW was obtained along River Asa. The energy potentials obtained could be harnessed and deployed to the communities around the watershed for their energy needs.

Image processing method of two-phase bubbly flow using ellipse fitting algorithm (최적 타원 생성 알고리즘 기반 2상 기포 유동 영상 처리 기법)

  • Myeong, Jaewon;Cho, Seolhee;Lee, Woonghee;Kim, Sungho;Park, Youngchul;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.28-35
    • /
    • 2021
  • In this study, an image processing method for the measurement of two-phase bubbly flow is developed. Shadowgraphy images obtained by high-speed camera are used for analysis. Some bubbles are generated as single unit and others are overlapped or clustered. Single bubbles can be easily analyzed using parameters such as bubble shape, centroid, and area. But overlapped bubbles are difficult to transform clustered bubbles into segmented bubbles. Several approaches were proposed for the bubble segmentation such as Hough transform, connection point method and watershed. These methods are not enough for bubble segmentation. In order to obtain the size distribution of bubbles, we present a method of splitting overlapping bubbles using watershed and approximating them to ellipse. There is only 5% error difference between manual and automatic analysis. Furthermore, the error can be reduced down to 1.2% when a correction factor is used. The ellipse fitting algorithm developed in this study can be used to measure bubble parameters accurately by reflecting the shape of the bubbles.

A Determination of Design Flood for a small Basin by Unit Hydrograph Method (단위유량도법에 의한 소유역의 계획홍수량 결정)

  • 윤용남;침순보
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.76-86
    • /
    • 1976
  • The 30-year design flood hydrograph for the Musim Representative Basin, one of the study basins of the International Hydrological Program, is synthesized by the method of unit hydrograph. The theory of unit hydrograph has been well known for a long time. However, the synthesis of flood hydrograph by this method for a basin with insufficient hydrologic data is not an easy task and hence, assumptions and engineering judgement must be exercized. In this paper, the problems often encountered in applying the unit hydrograph method are exposed and solved in detail based on the theory and rational judgement. The probability rainfall for Cheonju Station is transposed to the Musim Basin since it has not been analyzed due to short period of rainfall record. The duration of design rainfall was estimated based on the time of concentration for the watershed. The effective rainfall was determined from the design rainfall using the SCS method which is commonly used for a small basin. The spatial distribution of significant storms was expressed as a dimensionless rainfall mass curve and hence, it was possible to determine the hyetograph of effective design storm. To synthesize the direct runoff hydrograph the 15-min. unit hydrograph was derived by the S-Curve method from the 1-hr unit hydrograph which was obtained from the observed rainfall and runoff data, and then it was applied to the design hyetograph. The exsisting maximum groundwater depletion curve was derived by the base flow seperation. Hence, the design flood hydrograph was obtained by superimposing the groundwater depletion curve to the computed direct runoff hydrograph resulting from the design storm.

  • PDF