• Title/Summary/Keyword: Unit cement content

Search Result 159, Processing Time 0.018 seconds

An Experimental Study on the Concrete Pore Structure Property (콘크리트의 공극 특성에 관한 실험적 연구)

  • Lee, Mun-Hwan;Jung, Mi-Kyung;Oh, Se-Chul;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.179-189
    • /
    • 1999
  • This study attempts to propose an evaluation considering the property of concrete pore which affects the deterioration of neutralization and the rebar resistance of concrete. Understanding pore property of concrete in using extent, for practical using of concrete manufacturing condition. basic quality property and durability estimation etc, the results of the experiment are as follows. 1) The result of analysis pore property of every specimen with the method of area ratio, in limitation of $10^{-6}{\sim}10^{-5}m$, the pore distribution ratio was maximum. It was high value as W/C was increased and the unit cement content was decreased. 2) In case of using admixture. the volume of pores was some increased as variation of mixing content. In high W/C range, it was very increased compared with plain concrete. 3) Concerned with compressive strength and volume of pores in hardened concrete, it is possible compressive strength estimation using the property of concrete pores. 4) Direct measurement of concrete pore property is difficult. the valuation of the dynamic modulus of elasticity using ultrasonic wave velocity was available. 5) Quantitatively evaluation of concrete structure durability by past result of pore distribution estimation, and it can be estimative scale of property study on the concrete materials.

  • PDF

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.

Evaluation of Flow and Engineering Properties of High-Volume Supplementary Cementitious Materials Lightweight Foam-Soil Concrete (하이볼륨 혼화재 경량기포혼합토 콘크리트의 유동성 및 공학적 특성 평가)

  • Shim, Sang-Woo;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The present study prepared lightweight foam-soil concrete mixtures classified into three groups. Considering the sustainablility, workability, and compressive strength development of such concrete, high-volume supplementary cementitious materials (SCMs) were used as follows: 20% cement, 15% fly ash, and 65% ground granulated blast-furnace slag. As main test parameters selected for achieving the compressive strength of 1MPa and dry density of $1,000kg/m^3$, the unit solid content (dredged soil and binder) ranged between 900 and $1,807kg/m^3$, and soil-to-binder ratio varied between 3.0 and 7.0. Test results revealed that the flow of the lightweight foam-soil concrete tended to decrease with the increase of unit soil content. The compressive strength of such concrete increased with the increase with the unit binder content, whereas it decreased as soil-to-binder ratio increased, indicating that the compressive strength can be formulated as a function of its dry density and soil-to-binder ratio.

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

Engineering Properties of Concrete with Rice-Straw Ash (볏짚재를 혼입(混入)한 콘크리트의 공학적(工學的) 성질(性質))

  • Sun, Chan Yong;Lee, Hee Man;Kim, Young Ik;Kim, Kyung Tae;Seo, Dae Seuk;Nam, Ki Sung
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.285-292
    • /
    • 1998
  • This study was performed to evaluate the engineering properties of concrete using normal portland cement, natural aggregates and rice-straw ash. The following conclusions were drawn; 1. The unit weight was in the range of $2,250{\sim}2,335kgf/m^3$, the weights of those concrete were decreased 1~5% than that of the normal cement concrete, respectively. 2. The highest strength was achieved by 5% rice-straw ash filled rice-straw ash concrete, it was increased 17% by compressive strength, 30% by tensile strength and 21% by bending strength than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 4,059~4,360m/s, which was showed about the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity was showed by 5% rice-straw ash filled rice-straw ash concrete. 4. The acid-proof was increased with increase of the content of rice-straw ash. The acid-proof was increased 1.15 times by 5% rice straw ash, 1.45 times by 10%, 1.6 times by 15% rice-straw ash filled concrete than that of the normal cement concrete, respectively.

  • PDF

Properties of Ternary or Quaternary High Strength Concrete Using Silica Fume & Meta Kaolin (실리카퓸과 메타카올린을 사용한 다성분계 고강도콘크리트의 특성)

  • Park, Cho-Bum;Kim, Ho-Su;Jeon, Jun-Young;Kim, Eun-Kyum;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.307-315
    • /
    • 2008
  • In this study, it is investigated the properties of high strength concrete using mineral admixture, on the purpose of use of meta kaolin for the substitutive materials to silica fume which is so expensive. The plain mixtures are 3 degrees which are ordinary portland cement, blast furnace slag cement and OPC included fly ash 20%, and silica fume and meta kaolin are substituted for the each plain mixtures in the range of 20%. The results of experiment showed as follows. In case of silica fume was only used, the viscosity and slump flow of fresh concrete were much decreased, on the contrary air content increased. But as usage of meta kaolin increased, to being increase the viscosity of fresh concrete, slump flow increased and air content and usage of super-plasticizer were decreased. Accordingly the workabilities of concrete were against tendency between silica fume and meta kaolin. The compressive strength, velocity of ultrasonic pulse and unit weight were increased according to usage of meta kaolin, the properties of hardened concrete were judged that they are affected with air content of fresh concrete, so it is very important to control air content of high strength concrete. Therefore, the use of meta kaolin is prospected to the substitutive material of silica fume, in case of using silica fume and meta kaolin, it is judged that the optimum usage of silica fume and meta kaolin is about 10% respectively, considering workability and strength of concrete.

Physical Properties of Lightweight Foamed Concrete with Flame Resistant EPS Waste (난연성 EPS 폐기물을 혼입한 경량기포 콘크리트의 물리적 특성)

  • Eo, Seok-Hong;Son, Ji-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.226-234
    • /
    • 2017
  • The physical properties of lightweight foamed concrete mixed with EPS waste and flame resistant EPS waste were investigated. For this purpose, the main variables considered were a cement content of 300 and $400kgf/m^3$ and an EPS replacement ratio of 0, 10, 20, 30, and 40% by the volume ratio of the foam. The water-cement ratio and the dilution concentration were fixed to 0.5 and 10% respectively. The test results showed that the apparent density meets degrees 0.5 and 0.6 of KS F4039, and they showed little difference between the two mixes of Type A and Type B, regardless of the unit cement content. The bending strength obtained through the compressive strength also met the degree of KS F 4039. The thermal conductivity was 1~3% higher for the mixes of EPS than the case of flame resistant EPS, but both mixes met the 0.4 degree of KS F4039. The absorption ratio showed the values above 20% with a 1~3% difference for the two mixes, which mean further studies will be needed to reduce the absorption ratio.

Mechanical Properties and Impact Resistance Review of Carbon Fiber Reinforced Cement Composites with Different Fiber Contents and Fiber Lengths (섬유혼입률 및 섬유길이 변화에 따른 탄소섬유 보강시멘트 복합재료의 역학적 특성과 내충격성 검토)

  • Heo, Gwang-Hee;Song, Ki-Chang;Park, Jong-Gun;Han, Yoon-Jung;Lim, Cae-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.86-95
    • /
    • 2019
  • Recently, the applications of carbon fiber have been broader than ever when it comes to such industrials as automobiles, ships, aerospace, civil engineering and architecture because of their lightweight-ness and high mechanical properties. This study analyzed mechanical properties and flexural behavior of carbon fiber reinforced cement composites(CFRC) with different fiber contents and fiber lengths, and also impact resistance by natural drop test on mortar specimens was compared and examined. In addition, contents of carbon fiber(CF) were varied by 0.5%, 1.0%, 2.0% and 3.0%. Fiber lengths was used for 6 mm and 12 mm, respectively. As a result of the test, the flow value was very disadvantageous in terms of fluidity due to the carbon fiber ball phenomenon, and the unit weight was slightly reduced. In particular, the compressive strength was decreased with increasing carbon fiber contents. On the other hand, the flexural strength was the highest with 12 mm fiber length and 2% fiber content. As the results of the impact resistance test, the specimens of plain mortar takes about 2~3 times to final fracture, while the specimens of CFRC is somewhat different depending on the increase of the fiber contents. However, when the fiber length is 12 mm and the fiber content is 2%, the impact resistance was the highest.

Service Life Variation Considering Increasing Initial Chloride Content and Characteristics of Mix Proportions and Design Parameters (초기 염화물량의 증가와 배합 및 설계 변수 특성을 고려한 콘크리트 내구수명의 변동성)

  • Park, Sun-Kyung;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • It is very important for structure designer to understand the service life variation since a wide range of service life is evaluated with changing exposure conditions and design parameters. Recently, for zero-carbon, waste plastic has been used for fuel for clinker production and this yields increase in chloride content in cement. This study is for evaluation of changing service life in the concrete with increasing initial chloride content due to usage of plastic-SRF(Solid Refuse Fuel) considering various exposure conditions and design parameters. For this, 4 levels of initial chloride content were assumed, and the service life was assessed using LIFE 365 program considering various environmental conditions including 3 levels of surface chloride content. As for analysis parameters, critical/initial chloride content, blast furnace slag powder replacement ratio, W/B(Water to Binder) ratio, cover depth, and unit mass for binder are adopted. Service life decreases with increasing initial chloride content and a significant reduction of service life is not evaluated permitting up to 1,000ppm of initial chloride content. With increasing slag replacement ratio, a longer service life can be secured since blast furnace slag powder has the effect of reducing the diffusion of external chloride ions and fixing the free chloride. It is thought that increasing initial chloride content up to European standard is helpful for enhancing sustainability and reducing carbon emission. Though the reduction in service life due to an increase in the initial chloride content is not significant in slag-concrete with low surface chloride content, careful consideration for mixing design should be paid for the exposure environment with high surface chloride content.