• Title/Summary/Keyword: Unit Watershed

Search Result 325, Processing Time 0.028 seconds

Evaluation of Agricultural Water Supply Potential in Agricultural Reservoirs (농업용 저수지에서의 농업용수 잠재능 평가)

  • Kim, Jin Soo;Lee, Jae Yong;Lee, Jeong Beom;Song, Chul Min;Park, Ji Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • The new concept of agricultural water supply potential, which is mean annual turnover rate times unit storage capacity, was introduced for agricultural reservoirs. We investigated characteristics of mean annual turnover rate and unit storage capacity for agricultural reservoirs with storage capacity of over $1million\;m^3$. The curve of agricultural water supply potential represents change in mean annul turnover rate according to change in unit storage capacity. The mean annual turnover rate and unit storage capacity in the reservoirs with high minimum storage ratio are significantly higher than those in the reservoirs with low minimum storage ratio. Most of unstable water supply reservoirs showed low mean annual turnover rate or low unit storage capacity, indicating that mean annual turnover rate may be an index of stability degree for agricultural water use. The reservoirs with mean annual turnover rate of over 2 and unit storage capacity of over 0.8 m may be estimated as the stable water supply zone for 10 frequency dry year. The reservoirs with high agricultural water supply potential can belong to the wide range of stable water supply zone. The results suggest that relation between mean annual turnover rate and unit storage capacity may be used in evaluating stability degree for agricultural water supply in the reservoirs.

Development of Syntheic Unit Hydrograph for Estimation of design Flood (설계홍수량 산정을 위한 단위유량도의 합성방법 개발)

  • Lee, Hong-Rae;Lee, Jong-Guk;Seo, Byeong-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1989.07a
    • /
    • pp.17-30
    • /
    • 1989
  • In this study, more exact runoff phenomina of the watersheds were comprehened and the relationships between geographical factors of the selected watershed and the unit hydrograph characteristic variables representing runoff processes, were also established. Moreover, the estimation of the adequate design flood was presented, which is needed for the design of the hydrologic structures in the ungauged watersheds. And owing to these results, it is considered to be possible to execute the effective flood control projects of the river and the efficient water resources management.

  • PDF

Hydraulic Characteristics of Bocheong Stream Basin (보청천 유역의 수리학적 특성분석)

  • Jeon, Min-Woo;Yeon, Gyu-Bang;Cho, Young-Soo;Kim, Chong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1311-1315
    • /
    • 2009
  • Understanding of the hydraulics of flow is very important to support the management of river. The cross-sectional area, average velocity, flow depth and discharge can be regarded as a power function each other. In this paper the flow of Bocheong stream basin is experimentally studied. The correlation analysis was performed between observed hydraulic factors by the power type function. The constants resulted from the correlation analysis were calculated by the geomorphologic characteristics of the watershed using the power type function. The correlation coefficients between the hydraulic factors were appeared close to unit having strong correlationship. The two conditions of equality of the continuity equation were analysed, and the conditions were found to be good results. From these results the observed hydraulic data of Bocheong stream basin can be concluded as a reliable data. The correlation coefficients between the parameters of the hydraulic characteristics and geomorphologic factors were found to be close to unit.

  • PDF

A Study on the Estimation of the Unit Load by the Outflow Characteristics of Suspended Solids in the Upstream Watershed of So-yang Lake (소양호 상류유역의 부유물질 유출특성에 의한 원단위 산정에 관한 연구)

  • Choi, Han-Kuy;Choi, Soon-Kuy;Park, Soo-Jin
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.53-61
    • /
    • 2006
  • In this research, we have selected the regions of Naerin river and Inbuk river where agricultural activities are actively carried out in the upper Soyang Reservoir and we have observed the changes of water quality while raining after finding out the characteristics of the outflow of floating materials by measuring the water quantity and water quality in division of rainy season and non-rainy season for those floating materials of generating pollutions of turbidity and malnutrition of the water for 4 year from 2002 to 2005. Results of the observation showed that the outflow of floating materials is significantly affected by the surface outflow of rain water, in particular, the surface outflow was great in June -August period of flood seasons.

  • PDF

Peak Discharge Change by Different Design Rainfall on Small Watershed (소규모유역에서 설계강우의 분포형태에 따른 첨두유량의 변화연구)

  • 김병호;장석환
    • Water for future
    • /
    • v.24 no.1
    • /
    • pp.93-97
    • /
    • 1991
  • To design the minor structures in the small watersheds, it is required to calculate the peak discharge. For these calculations the simple peak flow prediction equations, the unit hydrograph method, the synthetic unit hydrograph methods or the runoff simulation models are adopted. To use these methods it is generally required to know the amount and the distributions, which are the uniform distribution, the triangular distribution, the trapezoidal distribution, or the Huff type distribution, of the design rainfall. In this study, the peak discharges are calculated by the different rainfall distribution and the values are compared.

  • PDF

Development of Syntheic Unit Hydrograph for Estimation of Design Flood (설계홍수량 산정을 위한 합성단위유량도의 개발)

  • Lee, Hong-Rae;Lee, Chong-Kuk;Seoh, Byung-Ha
    • Water for future
    • /
    • v.22 no.4
    • /
    • pp.423-433
    • /
    • 1989
  • In this study, more exact runoff phenomina of the watersheds were comprehended and the relationships between geographical factors of the selected watershed and the unit hydrograph characteristic variables representing runoff processes, were also established. Moreover, the estimation of the adequate design flood was presented, which is needed for the design of the hydrologic structures in the ungauged watersheds. And owing to these results, it is considered to be possible to execute the effective flood control projects of the river and the efficient water resources management.

  • PDF

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF

A Study on the Water Quality Patterns of Unit Watersheds for the Management of TMDLs - in Nakdong River Basin - (수질오염총량관리 단위유역 수질변화 유형분석 - 낙동강수계를 대상으로 -)

  • Park, Jun Dae;Kim, Jin Lee;Rhew, Doug Hee;Jung, Dong Il
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.279-288
    • /
    • 2010
  • The water quality variations or changes are closely relevant to the characteristics of unit watersheds and have an effect on the attainment of their water quality goal. This study was conducted to analyze the water quality distribution and its change patterns of unit watersheds in Nakdong river basin. It revealed that 25 unit watersheds out of 41 showed the normality in water quality. Most of unit watersheds had a considerable variation in water quality, especially in the season of spring and summer but a little in terms of flow rate. Annual relative differences in water quality ranged from 13.0 to 26.6% with the maximum of 75%. 28 unit watersheds (62%) had the tendency to decrease in water quality as the flow rate increased while 13 (38%) to increase. The extension of standard flow led to considerable differences in water quality depending on its ranges, which meant uncertainties might be included in the process of TMDL development. It is suggested that annual average flow rate should be chosen as a standard flow in the area where the water quality change has little relation to the flow rate.

Derivation of Snyder's Synthetic Unit Hydrograph Using Fractal Dimension (프랙탈 차원을 이용한 스나이더 합성단위유량도 관계식 유도)

  • Go, Yeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.291-300
    • /
    • 1999
  • The Snyder's synthetic unit hydrograph method is selected to apply the concept of the fractal dimension by stream order for the practicable rainfall-runoff generation, and fourth types of the Snyder's relation are derived from topographic and observed unit hydrograph data of twenty-nine basins. As a result of the analysis of twenty-nine basins and the verification of two basins, the Snyder's relation which considers the fractal dimension of the stream length and uses calculated unit hydrograph data shows the best result. The concept of the fractal dimension by stream order is applied to the Snyder's synthetic unit hydrograph method. The topographic factors, used in the Snyder's synthetic unit hydrograph method, which have a property of the stream length like $L_{ma}$ (mainstream length) and $L_{ca}$ (length along the mainstream to a point nearest the watershed centroid) were considered. In order to simplify the fractal property of stream length, it is supposed that $L_{ma}$ has not the fractal dimension and the stream length between $L_{ma}$ and ($L_{ma}\;-\;L_{ca}$) has the fractal dimension of 1.027. From the utilization of this supposition, a new Snyder's relation which consider the fractal dimension of the stream length occurred by the map scale used was finally suggested.

  • PDF

Determination of Optimal Unit Hydrographs and Infiltration Rate Functions at the site of the Su-Jik Bridge in the HwangGuJichen River (황구지천 수직교 지점에서의 최적 단위도 및 침투율의 결정)

  • Ahn, Taejin;Cho, Byung Doon;Lyu, Heui Jeong
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2005
  • This paper is to present the determination of the optimal loss rate parameters and unit hydrographs from the observed single rainfall-runoff event using optimization model. The linear program models has been formulated to derive the optimal unit hydrographs and loss rate parameters for the site of the Su-Jik Bridge in the HwangGuJichen River; one minimizes the summation of the absolute residual between predicted and observed runoff ordinates. In the perturbation stage of parameters the trial and error method has been adopted to determine the loss rate parameters for Kostiakov's, Philip's, Horton's, and Green-Ampt's equation. The unique unit hydrograph ordinates for a given rainfall-runoff event is exclusively obtained with ${\Phi}$ index, but unit hydrograph ordinates depend upon the parameters for each loss rate equations. In this paper the single rainfall-runoff event observed from the sample watershed is considered to test the proposed method. The optimal unit hydrograph obtained by the optimization model has smaller deviations than the ones by the conventional method.

  • PDF