• Title/Summary/Keyword: Uniform price auction

Search Result 3, Processing Time 0.015 seconds

An Analytical Effects of Maximum Quantity Constraint on the Nash Solution in the Uniform Price Auction (발전기 최대용량 제약이 현물시장의 내쉬균형에 미치는 영향에 대한 해석적 분석)

  • 김진호;박종배;박종근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.340-346
    • /
    • 2003
  • This paper presents a game theory application for an analysis of uniform price auction in a simplified competitive electricity market and analyzes the properties of Nash equilibrium for various conditions. We have assumed that each generation firm submits his bid to a market in the form of a sealed bid and the market is operated as a uniform price auction. Two firms are supposed to be the players of the market, and we consider the maximum generation quantity constraint of one firm only. The system demand is assumed to have a linear relationship with market clearing prices and the bidding curve of each firm, representing the price at which he has a willingness to sell his generation quantity, is also assumed to have a linear function. In this paper, we analyze the effects of maximum generation quantity constraints on the Nash equilibrium of the uniform price auction. A simple numerical example with two generation firms is demonstrated to show the basic idea of the proposed methodology.

A Study on Transaction Pricing of Generation Bidding in Electricity Market by Using Game Theory (게임이론을 이용한 전력시장 발전입찰에서의 거래가격 결정에 관한 연구)

  • 이광호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.333-339
    • /
    • 2003
  • Competition among electric generation companies is a major goal of restructuring in the electricity industry. In electricity market, a huge volume of commodities will be traded through competitive bidding. The choice between uniform and pay-as-bid pricing for electricity auction has been one of most important issues in deregulated electricity market. This paper proposes a constrained Bertrand model for analyzing the electricity auction market of price competition model. The issue of the two pricing rules of uniform and pay-as-bid is studied from the viewpoint of consumer's benefit. This paper also shows that transmission congestion depends on the pricing mechanism. Pay-as-bid pricing gives less possibility of transmission congestion by price competition, and less burden to consumers in the simulation results.

An Analytical Investigation for Nash Equilibriums of Generation Markets

  • Kim Jin-Ho;Won Jong-Ryul;Park Jong-Bae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.85-92
    • /
    • 2005
  • In this paper, Nash equilibriums of generation markets are investigated using a game theory application for simplified competitive electricity markets. We analyze the characteristics of equilibrium states in N-company spot markets modeled by uniform pricing auctions and propose a new method for obtaining Nash equilibriums of the auction. We assume that spot markets are operated as uniform pricing auctions and that each generation company submits its bids into the auction in the form of a seal-bid. Depending on the bids of generation companies, market demands are allocated to each company accordingly. The uniform pricing auction in this analysis can be formulated as a non-cooperative and static game in which generation companies correspond to players of the game. The coefficient of the bidding function of company-n is the strategy of player-n (company-n) and the payoff of player-n is defined as its profit from the uniform price auction. The solution of this game can be obtained using the concept of the non-cooperative equilibrium originating from the Nash idea. Based on the so called residual demand curve, we can derive the best response function of each generation company in the uniform pricing auction with N companies, analytically. Finally, we present an efficient means to obtain all the possible equilibrium set pairs and to examine their feasibilities as Nash equilibriums. A simple numerical example with three generation companies is demonstrated to illustrate the basic idea of the proposed methodology. From this, we can see the applicability of the proposed method to the real-world problem, even though further future analysis is required.