• Title/Summary/Keyword: Uniform linear array

Search Result 71, Processing Time 0.021 seconds

Cell Searching and DoA Estimation Techniques for Mobile Relay Stations with a Uniform Linear Array (선형 등간격 어레이를 갖는 이동 릴레이를 위한 셀 탐색 및 입사각 추정 기법)

  • Ko, Yo-Han;Park, Chang-Hwan;Lee, Seung-Jae;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.530-538
    • /
    • 2010
  • In this paper, estimation methods of cell searching and DoA (Direction of Arrival) for mobile relay stations with a uniform linear array are proposed. The proposed methods can improve the performance of cell searching and DoA estimation by removing the effect of STOs when there exist symbol timing offsets (STOs) between the signals received from adjacent base stations,. Also, the proposed methods can improve the performance of DoA estimation significantly when there exists Doppler frequency shift caused by movement of the mobile relay station. The performances and computational complexities of the proposed cell searching and DoA methods are evaluated by computer simulation under Mobile WiMAX environments.

Blind Parameter Estimation Schemes for Uniform Linear Array MIMO Radars Using Distributed Multiple Electronic Sensors (분산 다중 전자전 센서를 이용한 등 간격 선형 배치 MIMO 레이다 파라미터의 암맹 추정 기법)

  • Kim, Dong-Hyun;Lee, Jae-Hoon;Song, Jong-In;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.619-627
    • /
    • 2017
  • MIMO(Multi-Input Multi-Output) radar is an emerging radar technology for its numerous advantages. However, in the electric warfare viewpoint, MIMO radar is a new developed radar technology for that existing parameter estimation cannot applied and a new radar parameter estimation based on the characteristics of MIMO radar is desired. In this paper, we propose a blind estimation scheme for the number of orthogonal waveforms of a uniform linear array(ULA) MIMO radar using minimum two electronic sensors.

Mutual Coupling Compensation and Direction Finding for Anti-Jamming 3D GPS Antenna Array (항재밍 3차원 GPS 배열 안테나를 위한 Mutual coupling 보상 및 재밍 방향탐지 알고리즘)

  • Kang, Kyusic;Sin, Cheonsig;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.723-730
    • /
    • 2017
  • In this paper, we consider an online compensation algorithm considering the mutual coupling and suggest a new GPS antenna array to apply. To evaluate the anti-jamming performance for the proposed antenna array, ULA and URA, we divide direction finding of multiple jamming signals into environments. 1. there is no mutual coupling. 2. there is mutual coupling but no compensation. 3. mutual coupling is compensated. RMSE analysis showed that the online compensation algorithm works and that peak detection is possible for multiple jamming signals.

A Study on Design and Implementation of Scalable Angle Estimator Based on ESPRIT Algorithm (ESPRIT 알고리즘 기반 재구성 가능한 각도 추정기 설계에 관한 연구)

  • Dohyun Lee;Byunghyun Kim;Jongwha Chong;Sungjin Lee;Kyeongyuk Min
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.624-629
    • /
    • 2023
  • Estimation of signal parameters via rotational invariance techniques (ESPRIT) is an algorithm that estimates the angle of a signal arriving at an array antenna using the shift invariance property of an array antenna. ESPRIT offers the good trade-off between performance and complexity. However, the ESPRIT algorithm still requires high-complexity operations such as covariance matrix and eigenvalue decomposition, so implementation with a hardware processor is essential to estimate the angle of arrival in real time. In addition, ESPRIT processors should have high performance. The performance is related to the number of antennas, and the number of antennas required for each application are different. Therefore, we proposed an ESPRIT processor that provides 2 to 8 variable antenna configurations to meet the performance and complexity requirements according to the applied field. The proposed ESPRIT processor was designed using the Verilog-HDL and implemented on a field programmable gate array (FPGA).

Decoupled Location Parameter Estimation of 3-D Near-Field Sources in a Uniform Circular Array using the Rank Reduction Algorithm

  • Jung, Tae-Jin;Kwon, Bum-Soo;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • An algorithm is presented for estimating the 3-D location (i.e., azimuth angle, elevation angle, and range) of multiple sources with a uniform circular array (UCA) consisting of an even number of sensors. Recently the rank reduction (RARE) algorithm for partly-calibrated sensor arrays was developed. This algorithm is applicable to sensor arrays consisting of several identically oriented and calibrated linear subarrays. Assuming that a UCA consists of M sensors, it can be divided into M/2 identical linear subarrays composed of two facing sensors. Based on the structure of the subarrays, the steering vectors are decomposed into two parts: range-independent 2-D direction-of-arrival (DOA) parameters, and range-relevant 3-D location parameters. Using this property we can estimate range-independent 2-D DOAs by using the RARE algorithm. Once the 2-D DOAs are available, range estimation can be obtained for each source by defining the 1-D MUSIC spectrum. Despite its low computational complexity, the proposed algorithm can provide an estimation performance almost comparable to that of the 3-D MUSIC benchmark estimator.

An Estimation Technique of Cell ID and DoA for a Mobile Relay Station Under a Multipath Channel (다중 경로 채널에서의 이동 릴레이의 셀 탐색 및 DoA 추정 방법)

  • Pec, Rothna;Kim, In Su;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.58-67
    • /
    • 2013
  • In this paper, a mobile relay station(MRS) for vehicles with a beamforming antenna is considered to increase the reliability of a transmission link, especially for the MRS at cell boundary. Cell searching and direction-of-arrival(DoA) estimation methods for an MRS with a uniform linear array(ULA) are proposed for a multipath environment in OFDM-based cellular systems. Performances of the proposed methods(Method1 and Method2) are evaluated by computer simulation with the standard profile of IEEE 802.16e.

A Study on Optimum Performance in MIMO RADAR with Transmit and Receive Antenna Allocation (MIMO 레이더에서 송수신 안테나 분배에 의한 최적 성능에 관한 연구)

  • NamGoong, Geol;Lim, Jong-Tae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.204-210
    • /
    • 2012
  • In this paper, we study the method of estimating direction of departure(DOD) and direction of arrival(DOA) using estimation of signal parameters via rotational invariant techniques (ESPRIT) in uniform linear array MIMO radar system. While it is possible to improve the resolution by increasing the numbers of physical antennas and snapshots after matched filtering, such methods generally give rise to increase in complexity. In this paper, we propose to improve the resolution by optimally allocating the number of transmit and receive antennas. In particular, we show that the performance is optimized when the number of the receive antennas is approximately twice that of transmit antennas.

A Study on the Time Delay Compensate Algorithm in Uniform Linear Array Antenna on Radar System (레이더시스템의 등 간격 선형 배열 안테나에서 시간 지연 보상 알고리즘 연구)

  • Lee, Min-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.434-439
    • /
    • 2019
  • This paper proposed a control algorithm to compensate the delay time to improve the signal to noise, and the proposed control algorithm estimate the target information to apply the continuous wave radar equation. The proposed control algorithm improves the output signal of each array element bv multiplying the weight of the receive signal to the signal to noise ratio. Radar radiate a signal in spatial and the target information is estimated by the echoed signal from the target. But the signal in the wireless communication environment occurs the delay time due to the multipath which appear human and natural structures. It is difficult to accurately estimate the desired information because of the degradation for the system performance due to the interference signal and the signal distortion. The target information can be improved by compensating the delay signal to apply the weight to the received signal by using the uniform linear array antenna. As a simulation result, we show that the performance of the proposed control algorithm and the non-compensated delay time are compared. The proposed control algorithm proved that the target distance estimation information is improved.

Blind Waveform Estimation Scheme Based on ESPRIT for Nonuniform Linear Array MIMO Radars Using Distributed Multiple Electronic Sensors (분산 다중 전자전 센서를 이용한 ESPRIT 기반 비등간격 선형배열 MIMO 레이다의 암맹 직교신호 분리 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.891-897
    • /
    • 2018
  • In this paper, we propose a blind estimation scheme for the antenna spacing of nonuniform linear array MIMO radar using distributed electronic sensors based on ESPRIT. We present a blind method to separate orthogonal waveforms of a MIMO radar based on the antenna spacing estimation. The estimated orthogonal waveforms of a MIMO radar can be used for disabling opponent MIMO radars.

GA-Enhanced Dual-Band Aperiodic Linear Dipole Array with Low Sidelobe Level (낮은 부엽 준위를 갖는 이중 대역 다이폴 배열 안테나)

  • Son, Trinh-Van;Kwon, Gina;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Kim, Dong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1296-1302
    • /
    • 2012
  • In this research, optimization of a dual-band dipole array was performed using genetic algorithm. A non-uniform, aperture-shared linear array was configured with dipoles which resonate at 4 GHz and 9.5 GHz. The excited current distributions on dipoles were computed considering mutual coupling between dipole elements. The current distributions were also computed using method of moment (MoM). The optimization using genetic algorithm was performed to obtain the low sidelobe levels in two operating frequency band. The PSLs of the optimized array for 4 GHz and 9.5 GHz are -15.7 dB and -17 dB, respectively. Comparison between computed and simulated results are also discussed.