• 제목/요약/키워드: Uniform hazard spectrum

검색결과 26건 처리시간 0.025초

암반 지반의 재해도 스펙트럼에 기반한 토사지반 원전 부지의 등재해도 스펙트럼 평가 기법 (Uniform Hazard Spectrum Evaluation Method for Nuclear Power Plants on Soil Sites based on the Hazard Spectra of Bedrock Sites)

  • 함대기;서정문;최인길;이현미
    • 한국지진공학회논문집
    • /
    • 제16권3호
    • /
    • pp.35-42
    • /
    • 2012
  • 암반지반에 주어진 등재해도 스펙트럼에 상응하는 원전부지 토사지반에서의 등재해도 스펙트럼을 도출하기 위한 확률론적 방법론을 제시하였다. 이를 위해 지진 운동 및 지반의 불확실성을 고려한 지반응답 해석을 통해 토사지반 지표에서의 지진동 증폭계수를 산정하였다. 증폭계수는 가장 상관관계가 높은 지반운동의 스펙트럴 가속도 규모와의 회귀분석을 통해 계산되었다. 이 방법론을 적용하여 국내 KNGR (Korean Next Generation Reactor) 및 APR1400 (Advanced Power Reactor 1400) 원전의 포괄부지 지반 중 B1, B4, C1 및 C3 지반을 대상으로 등재해도 스펙트럼을 도출하였다. 등재해도 스펙트럼을 통해 지진동 발생 빈도 별 위험 주파수 대역을 평가하고 분석하였다. 이 결과는 원전의 종합적 지진리스크 평가 결과를 보다 합리적으로 개선하는 데에 활용될 수 있으며, 향후 다양한 종류의 토사지반에 대한 등재해도 스펙트럼을 평가하는 데에 적용할 수 있을 것으로 기대된다.

국내 지진동 특성에 대한 기기 용접 정착부의 비탄성에너지 흡수계수를 고려한 지진취약도 평가 (Seismic Fragility Analysis of Equipment Considering the Inelastic Energy Absorption Factor of Weld Anchorage for Seismic Characteristics in Korea)

  • 임승현;김건규;최인길;곽신영
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.69-75
    • /
    • 2023
  • In Korea, most nuclear power plants were designed based on the design response spectrum of Regulatory Guide 1.60 of the NRC. However, in the case of earthquakes occurring in the country, the characteristics of seismic motions in Korea and the design response spectrum differed. The seismic motion in Korea had a higher spectral acceleration in the high-frequency range compared to the design response spectrum. The seismic capacity may be reduced when evaluating the seismic performance of the equipment with high-frequency earthquakes compared with what is evaluated by the design response spectrum for the equipment with a high natural frequency. Therefore, EPRI proposed the inelastic energy absorption factor for the equipment anchorage. In this study, the seismic performance of welding anchorage was evaluated by considering domestic seismic characteristics and EPRI's inelastic energy absorption factor. In order to reflect the characteristics of domestic earthquakes, the uniform hazard response spectrum (UHRS) of Uljin was used. Moreover, the seismic performance of the equipment was evaluated with a design response spectrum of R.G.1.60 and a uniform hazard response spectrum (UHRS) as seismic inputs. As a result, it was confirmed that the seismic performance of the weld anchorage could be increased when the inelastic energy absorption factor is used. Also, a comparative analysis was performed on the seismic capacity of the anchorage of equipment by the welding and the extended bolt.

Efficient damage assessment for selected earthquake records based on spectral matching

  • Strukar, Kristina;Sipos, Tanja Kalman;Jelec, Mario;Hadzima-Nyarko, Marijana
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.271-282
    • /
    • 2019
  • Knowing the response of buildings to earthquakes is very important in order to ensure that a structure is able to withstand a given level of ground shaking. Thus, nonlinear dynamic earthquake engineering analyses are unavoidable and are preferable procedure in the seismic assessment of buildings. In order to estimate seismic performance on the basis of the hazard at the site where the structure is located, the selection of appropriate seismic input is known to be a critical step while performing this kind of analysis. In this paper, seismic analysis is performed for a four-story reinforced concrete ISPRA frame structure which is designed according to Eurocode 8 (EC8). A total of 90 different earthquake scenarios were selected, 30 for each of three target spectrums, EC8 spectrum, Uniform Hazard Spectrum (UHS), and Conditional Mean Spectrum (CMS). The aim of this analysis was to evaluate the average maximum Inter-story Drift Ratio (IDR) for each target spectrum. Time history analysis for every earthquake record was obtained and, as a result, IDR as the main measure of damage were presented in order to compare with defined performance levels of reinforced concrete bare frames.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

A Study on the Site-Specific Response Spectrum in Korea

  • Myunghyun Noh;Im, Chang-Bok;Lee, Sung-Kyu
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(2)
    • /
    • pp.477-482
    • /
    • 1997
  • Safe shutdown earthquakes (SSE) of four existing nuclear power plant sites were evaluated by using a probabilistic method. It turned out that the SSE's of the two sites are smaller than those of the rest. Site-specific response spectra were developed for two sites of which SSE's show a comparatively large difference. The result shows that the site-specific response spectrum of one site is higher by a factor of 1.5 than that of the other. The comparison of uniform hazard spectrum and site-specific response spectrum at one of the two sites shows that the both spectra are consistent with each other.

  • PDF

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

국내 확률론적 지진계수 생성 (Development of Probabilistic Seismic Coefficients of Korea)

  • 곽동엽;정창균;박두희;이홍성
    • 한국지반공학회논문집
    • /
    • 제25권10호
    • /
    • pp.87-97
    • /
    • 2009
  • 지진계수는 지진재해도 함께 지표면에서의 설계응답스펙트럼을 생성하는데 사용된다. 지진계수는 일반적으로 결정론적인 방법으로 도출되는 반면 지진재해도는 확률론적으로 계산되어 이들은 혼용될 수 없으나, 국내외 내진설계기준에서는 이들을 명확한 근거없이 혼용하고 있다. 이와 같은 근본적인 문제점을 해결하기 위해서 본 연구에서는 기존의 지진재해분석과 암반노두에서는 동일한 결과를 재현하되 지반응답해석 기능을 추가하여 토층에서의 부지증폭현상을 고려한 확률론적인 지진계수를 도출할 수 있는 신(新) 지진재해분석 기법을 적용하였다. 신(新) 지진재해분석 기법의 또다른 장점은 지반의 불확실성과 임의성을 합리적으로 고려할 수 있다는 점이다. 본 연구에서 계산된 확률론적 지진계수는 내진설계기준(II)과 국내에서 제안된 지진계수 세트들과 비교하여 차이점을 분석하였다. 비교 결과, 내진설계기준(II)과는 현격한 차이가 있는 반면, 또다른 지진계수와는 일부 지반분류에서만 차이가 나는 것으로 나타났다.

The effect of structural variability and local site conditions on building fragility functions

  • Sisi, Aida Azari;Erberik, Murat A.;Askan, Aysegul
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.285-295
    • /
    • 2018
  • In this study, the effect of local site conditions (site class and site amplifications) and structural variability are investigated on fragility functions of typical building structures. The study area is chosen as Eastern Turkey. The fragility functions are developed using site-specific uniform hazard spectrum (UHS). The site-specific UHS is obtained based on simulated ground motions. The implementation of ground motion simulation into seismic hazard assessment has the advantage of investigating detailed local site effects. The typical residential buildings in Erzincan are represented by equivalent single degree of freedom systems (ESDOFs). Predictive equations are accomplished for structural seismic demands of ESDOFs to derive fragility functions in a straightforward manner. To study the sensitivity of fragility curves to site class, two sites on soft and stiff soil are taken into account. Two alternative site amplification functions known as generic and theoretical site amplifications are examined for these two sites. The reinforced concrete frames located on soft soil display larger fragilities than those on stiff soil. Theoretical site amplification mostly leads to larger fragilities than generic site amplification more evidently for reinforced concrete buildings. Additionally, structural variability of ESDOFs is generally observed to increase the fragility especially for rigid structural models.