• Title/Summary/Keyword: Uniform hazard response spectrum

Search Result 20, Processing Time 0.033 seconds

Minimum loading requirements for areas of low seismicity

  • Lam, Nelson T.K.;Tsang, Hing-Ho;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.539-561
    • /
    • 2016
  • The rate of occurrence of intraplate earthquake events has been surveyed around the globe to ascertain the average level of intraplate seismic activities on land. Elastic response spectra corresponding to various levels of averaged (uniform) seismicity for a return period of 2475 years have then been derived along with modifying factors that can be used to infer ground motion and spectral response parameters for other return period values. Estimates derived from the assumption of uniform seismicity are intended to identify the minimum level of design seismic hazard in intraplate regions. The probabilistic seismic hazard assessment presented in the paper involved the use of ground motion models that have been developed for regions of different tectonic and crustal classifications. The proposed minimum earthquake loading model is illustrated by the case study of Peninsular Malaysia which has been identified with a minimum effective peak ground acceleration (EPGA) of 0.1 g for a return period of 2475 years, or 0.07 g for a notional return period of 475 years.

Efficient damage assessment for selected earthquake records based on spectral matching

  • Strukar, Kristina;Sipos, Tanja Kalman;Jelec, Mario;Hadzima-Nyarko, Marijana
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Knowing the response of buildings to earthquakes is very important in order to ensure that a structure is able to withstand a given level of ground shaking. Thus, nonlinear dynamic earthquake engineering analyses are unavoidable and are preferable procedure in the seismic assessment of buildings. In order to estimate seismic performance on the basis of the hazard at the site where the structure is located, the selection of appropriate seismic input is known to be a critical step while performing this kind of analysis. In this paper, seismic analysis is performed for a four-story reinforced concrete ISPRA frame structure which is designed according to Eurocode 8 (EC8). A total of 90 different earthquake scenarios were selected, 30 for each of three target spectrums, EC8 spectrum, Uniform Hazard Spectrum (UHS), and Conditional Mean Spectrum (CMS). The aim of this analysis was to evaluate the average maximum Inter-story Drift Ratio (IDR) for each target spectrum. Time history analysis for every earthquake record was obtained and, as a result, IDR as the main measure of damage were presented in order to compare with defined performance levels of reinforced concrete bare frames.

Development of Probabilistic Seismic Coefficients of Korea (국내 확률론적 지진계수 생성)

  • Kwak, Dong-Yeop;Jeong, Chang-Gyun;Park, Du-Hee;Lee, Hong-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.87-97
    • /
    • 2009
  • The seismic site coefficients are often used with the seismic hazard maps to develop the design response spectrum at the surface. The site coefficients are most commonly developed deterministically, while the seismic hazarde maps are derived probabilistically. There is, hence, an inherent incompatibility between the two approaches. However, they are used together in the seismic design codes without a clear rational basis. To resolve the fundamental imcompatibility between the site coefficients and hazard maps, this study uses a novel probabilistic seismic hazard analysis (PSHA) technique that simulates the results of a standard PSHA at a rock outcrop, but integrates the site response analysis function to capture the site amplification effects within the PSHA platform. Another important advantage of the method is its ability to model the uncertainty, variability, and randomness of the soil properties. The new PSHA was used to develop fully probabilistic site coefficients for site classes of the seismic design code and another sets of site classes proposed in Korea. Comparisons highlight the pronounced discrepancy between the site coefficients of the seismic design code and the proposed coefficients, while another set of site coefficients show differences only at selected site classes.

Seismic performance of concrete moment resisting frame buildings in Canada

  • Kafrawy, Omar El;Bagchi, Ashutosh;Humar, Jag
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.233-251
    • /
    • 2011
  • The seismic provisions of the current edition (2005) of the National Building Code of Canada (NBCC) differ significantly from the earlier edition. The current seismic provisions are based on the uniform hazard spectra corresponding to 2% probability of exceedance in 50 years, as opposed to the seismic hazard level with 10% probablity of exeedance in 50 years used in the earlier edition. Moreover, the current code is presented in an objective-based format where the design is performed based on an acceptable solution. In the light of these changes, an assessment of the expected performance of the buildings designed according to the requirements of the current edition of NBCC would be very useful. In this paper, the seismic performance of a set of six, twelve, and eighteen story buildings of regular geometry and with concrete moment resisting frames, designed for Vancouver western Canada, has been evaluated. Although the effects of non-structural elements are not considered in the design, the non-structural elements connected to the lateral load resisting systems affect the seismic performance of a building. To simulate the non-structural elements, infill panels are included in some frame models. Spectrum compatible artificial ground motion records and scaled actual accelerograms have been used for evaluating the dynamic response. The performance has been evaluated for each building under various levels of seismic hazard with different probabilities of exceedance. From the study it has been observed that, although all the buildings achieved the life-safety performance as assumed in the design provisions of the building code, their performance characteristics are found to be non-uniform.

Seismic Response Amplification Factors of Nuclear Power Plants for Seismic Performance Evaluation of Structures and Equipment due to High-frequency Earthquakes (구조물 및 기기의 내진성능 평가를 위한 고주파수 지진에 의한 원자력발전소의 지진응답 증폭계수)

  • Eem, Seung-Hyun;Choi, In-Kil;Jeon, Bub-Gyu;Kwag, Shinyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.123-128
    • /
    • 2020
  • Analysis of the 2016 Gyeongju earthquake and the 2017 Pohang earthquake showed the characteristics of a typical high-frequency earthquake with many high-frequency components, short time strong motion duration, and large peak ground acceleration relative to the magnitude of the earthquake. Domestic nuclear power plants were designed and evaluated based on NRC's Regulatory Guide 1.60 design response spectrum, which had a great deal of energy in the low-frequency range. Therefore, nuclear power plants should carry out seismic verification and seismic performance evaluation of systems, structures, and components by reflecting the domestic characteristics of earthquakes. In this study, high-frequency amplification factors that can be used for seismic verification and seismic performance evaluation of nuclear power plant systems, structures, and equipment were analyzed. In order to analyze the high-frequency amplification factor, five sets of seismic time history were generated, which were matched with the uniform hazard response spectrum to reflect the characteristics of domestic earthquake motion. The nuclear power plant was subjected to seismic analysis for the construction of the Korean standard nuclear power plant, OPR1000, which is a reactor building, an auxiliary building assembly, a component cooling water heat exchanger building, and an essential service water building. Based on the results of the seismic analysis, a high-frequency amplification factor was derived upon the calculation of the floor response spectrum of the important locations of nuclear power plants. The high-frequency amplification factor can be effectively used for the seismic verification and seismic performance evaluation of electric equipment which are sensitive to high-frequency earthquakes.

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Application of Conditional Spectra to Seismic Fragility Assessment for an NPP Containment Building based on Nonlinear Dynamic Analysis (조건부스펙트럼을 적용한 원전 격납건물의 비선형 동적 해석 기반 지진취약도평가)

  • Shin, Dong-Hyun;Park, Ji-Hun;Jeon, Seong-Ha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.179-189
    • /
    • 2021
  • Conditional spectra (CS) are applied to the seismic fragility assessment of a nuclear power plant (NPP) containment building for comparison with a relevant conventional uniform hazard response spectrum (UHRS). Three different control frequencies are considered in developing conditional spectra. The contribution of diverse magnitudes and epicentral distances is identified from deaggregation for the UHRS at a control frequency and incorporated into the conditional spectra. A total of 30 ground motion records are selected and scaled to simulate the probability distribution of each conditional spectra, respectively. A set of lumped mass stick models for the containment building are built considering nonlinear bending and shear deformation and uncertainty in modeling parameters using the Latin hypercube sampling technique. Incremental dynamic analysis is conducted for different seismic input models in order to estimate seismic fragility functions. The seismic fragility functions and high confidence of low probability of failure (HCLPF) are calculated for different seismic input models and analyzed comparatively.

Derivation of response spectrum compatible non-stationary stochastic processes relying on Monte Carlo-based peak factor estimation

  • Giaralis, Agathoklis;Spanos, Pol D.
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.719-747
    • /
    • 2012
  • In this paper a novel approach is proposed to address the problem of deriving non-stationary stochastic processes which are compatible in the mean sense with a given (target) response (uniform hazard) spectrum (UHS) as commonly desired in the aseismic structural design regulated by contemporary codes of practice. The appealing feature of the approach is that it is non-iterative and "one-step". This is accomplished by solving a standard over-determined minimization problem in conjunction with appropriate median peak factors. These factors are determined by a plethora of reported new Monte Carlo studies which on their own possess considerable stochastic dynamics merit. In the proposed approach, generation and treatment of samples of the processes individually on a deterministic basis is not required as is the case with the various "two-step" approaches found in the literature addressing the herein considered task. The applicability and usefulness of the approach is demonstrated by furnishing extensive numerical data associated with the elastic design UHS of the current European (EC8) and the Chinese (GB 50011) aseismic code provisions. Purposely, simple and thus attractive from a practical viewpoint, uniformly modulated processes assuming either the Kanai-Tajimi (K-T) or the Clough-Penzien (C-P) spectral form are employed. The Monte Carlo studies yield damping and duration dependent median peak factor spectra, given in a polynomial form, associated with the first passage problem for UHS compatible K-T and C-P uniformly modulated stochastic processes. Hopefully, the herein derived stochastic processes and median peak factor spectra can be used to facilitate the aseismic design of structures regulated by contemporary code provisions in a Monte Carlo simulation-based or stochastic dynamics-based context of analysis.

Derivation of response spectrum compatible non-stationary stochastic processes relying on Monte Carlo-based peak factor estimation

  • Giaralis, Agathoklis;Spanos, Pol D.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.581-609
    • /
    • 2012
  • In this paper a novel non-iterative approach is proposed to address the problem of deriving non-stationary stochastic processes which are compatible in the mean sense with a given (target) response (uniform hazard) spectrum (UHS) as commonly desired in the aseismic structural design regulated by contemporary codes of practice. This is accomplished by solving a standard over-determined minimization problem in conjunction with appropriate median peak factors. These factors are determined by a plethora of reported new Monte Carlo studies which on their own possess considerable stochastic dynamics merit. In the proposed approach, generation and treatment of samples of the processes individually on a deterministic basis is not required as is the case with the various approaches found in the literature addressing the herein considered task. The applicability and usefulness of the approach is demonstrated by furnishing extensive numerical data associated with the elastic design UHS of the current European (EC8) and the Chinese (GB 50011) aseismic code provisions. Purposely, simple and thus attractive from a practical viewpoint, uniformly modulated processes assuming either the Kanai-Tajimi (K-T) or the Clough-Penzien (C-P) spectral form are employed. The Monte Carlo studies yield damping and duration dependent median peak factor spectra, given in a polynomial form, associated with the first passage problem for UHS compatible K-T and C-P uniformly modulated stochastic processes. Hopefully, the herein derived stochastic processes and median peak factor spectra can be used to facilitate the aseismic design of structures regulated by contemporary code provisions in a Monte Carlo simulation-based or stochastic dynamics-based context of analysis.

Seismic Fragility Analysis of High-Rise RC Box-Type Wall Building Structures (고층 RC 벽식 건물의 지진 취약도 분석)

  • Jeong, Gi Hyun;Lee, Han Seon;Hwang, Kyung Ran;Kwon, Oh-Sung;Kim, Sung-Jig
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.155-162
    • /
    • 2016
  • Observations of the damages to high-rise reinforced concrete (RC) wall building structures caused by by recent earthquakes in Chile ($M_w$ 8.8, February 2010) and New Zealand (February 2011, $M_L$ 6.3) have generally exceeded expectations. Firstly, this study estimated the seismic damage levels of 15-story RC box-type wall building structures using the analytical models calibrated by the results of a shaking table test on a 1:5 scale 10-story RC box-type wall building model. Then, the seismic fragility analysis of the prototype model was conducted by using the SAC/FEMA method and the incremental dynamic analysis (IDA). To compensate for the uncertainties and variability of ground motion and its impacts on the prototype model, in the SAC/FEMA method, a total of 61 ground motion records were selected from 20 earthquakes, with a magnitude ranging from 5.9 to 8.8 and an epicentral distance ranging from 5 to 105km. In the IDA, a total of 11 ground motion records were used based on the uniform hazard response spectrum representing a return period of 2,475 years. As a result, the probabilities that the limits of the serviceability, damage control, and collapse prevention would be exceeded were as follows: from the SAC/FEMA method: 79%, 0.3%, and 0%, respectively; and from the IDA: 57%, 1.7%, and 0%, respectively.