• 제목/요약/키워드: Uniform flow distribution

검색결과 448건 처리시간 0.029초

보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험 (Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8)

  • 이용곤;정상화;김창완;김종강
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.459-467
    • /
    • 2006
  • 본 연구에서는 화력발전소 순환수취수로의 유량증가가 취수펌프장 흐름에 미치는 영향을 해석하고 개선하기 위하여 수리 및 수치모형실험을 수행하였다. 수치모형실험결과에 의하면 화력발전소 순환수취수로의 유량이 증가하면 취수로내의 유속과 순환수취수 펌프장의 연직방향와도가 증가하여 순환수취수 펌프장내의 와류발생가능성이 크게 증가하는 것을 알 수 있었다. 수리모형실험을 수행하여 순환수취수펌프장 유입부의 수면 근처 흐름은 거의 균등한 유량 배분이 이루어지고 반면에, 바닥 근처의 흐름은 유량 배분이 균등하게 이루어지지 못하여 취수펌프장내에서 역류현상이 발생하는 것을 밝혀냈다. 삼각형 도류벽을 취수펌프장 유입부에 설치하여 유속분포의 불균일성을 제거할 수 있었고 역류발생문제를 제거하였다.

Slit-Coater 노즐에서 Photo Resist의 유동 특성 (Flow Characteristics of Photo Resist in a Slit-Coater Nozzle)

  • 김장우
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.37-40
    • /
    • 2004
  • This study presents numerical solutions of three-dimensional laminar flow-field formed by photo resist flow in a slit-coater model. We discuss on the governing equations, laminar viscosities and the computational model applied in our numerical calculation and some results. We prove that the structure of tapered-cavity aid to make uniform pressure-field and boundary effect is an important problem to improve coating uniformity. In view of uniformity improvement, it is necessary to study for the structure of cavity and flow path.

  • PDF

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

헤더-채널 분기관의 채널 돌출길이가 2상 유동 분배에 미치는 영향에 대한 연구 (Study on Effect of Channel Intrusion Depth on the Two-Phase Flow Distribution at Header-Channel Junction)

  • 이준경
    • 설비공학논문집
    • /
    • 제28권11호
    • /
    • pp.444-449
    • /
    • 2016
  • The main objective of this work is to experimentally investigate the effect of angle variation and intrusion depth of channels on the distribution of two-phase flow at header-channel junctions. The dimensions of the header and the channels in cross-section were fixed at $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Air and water were used as the test fluids. Two different header-channel positions were tested : a vertical header with horizontal channels (case VM-HC) and a horizontal header with horizontal channels (case HM-HC). In all cases, the intrusion depths of the channels are 0 mm, 2 mm, and 4 mm. For the case of the intrusion depth of VM-HC, the flow distribution became more uniform. However, the intrusion depth negatively affected the flow distribution for the case of HM-HC because liquid separation delay occurred.

Hybrid medium model for conjugate heat transfer modeling in the core of sodium-cooled fast reactor

  • Wang, X.A.;Zhang, Dalin;Wang, Mingjun;Song, Ping;Wang, Shibao;Liang, Yu;Zhang, Yapei;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제52권4호
    • /
    • pp.708-720
    • /
    • 2020
  • Core-wide temperature distribution in sodium-cooled fast reactor plays a key role in its decay heat removal process, however the prediction for temperature distribution is quite complex due to the conjugate heat transfer between the assembly flow and the inter-wrapper flow. Hybrid medium model has been proposed for conjugate heat transfer modeling in the core. The core is modeled with a Realistic modeled inter-wrapper flow and hybrid medium modeled assembly flow. To validate present model, simulations for a three-assembly model were performed with Realistic modeling, traditional porous medium model and hybrid medium model, respectively. The influences of Uniform/Non-Uniform power distribution among assemblies and the Peclet number within the assembly flow have been considered. Compared to traditional porous medium model, present model shows a better agreement with in Realistic modeling prediction of the temperature distribution and the radial heat transfer between the inter-wrapper flow and the assembly flow.

PEM 연료전지용 Bipolar Plate의 변화단면 유로에 대한 CFD 해석 (CFD Analysis on a Flow Channel of a Bipolar Plate with Varying Cross-sectional Area in a PEM Fuel Cell)

  • 양동진;박운진
    • 신재생에너지
    • /
    • 제3권3호
    • /
    • pp.14-19
    • /
    • 2007
  • A flow channel model of a bipolar plate with varying cross-sectional area was newly designed for improving performance and efficiency of a PEM fuel cell stack. As a result, the varying cross-sectional area model showed poor uniformity in velocity distribution, however, maximum velocity in the flow path is about 30% faster than that of the uniform cross-sectional area model. The proposed varying cross-sectional area model is expected to diffuse operating fluids more easily into diffusion layer because it has relatively higher values in pressure distribution compared with other flow channel models. It is expected that the implementation of the varying cross-sectional area model can reduce not only the mass transport loss but also the activation loss in a PEM fuel cell, and open circuit voltage of a fuel cell can thus be increased slightly.

  • PDF

CFD를 활용한 DOC-DPF 조합의 유동 균질도 분석 (Flow Uniformity Analysis of DOC-DPF System using CFD)

  • 김태훈;박성욱
    • 한국분무공학회지
    • /
    • 제24권3호
    • /
    • pp.122-129
    • /
    • 2019
  • Flow uniformity in aftertreatment system is an important factor in determining uniform catalytic reaction and filtration. In this study, variety types of DOC-DPF system design were analyzed to increase flow uniformity. For this analysis, ANSYS Fluent was used with porous media setup for DOC and DPF. Turbulent flow was modeled by standard $k-{\varepsilon}$ model excepting porous media. Uniformity index was utilized to evaluate the flow uniformity quantitatively. Reference design showed low velocity region because two large vortex were generated before baffle. When radius of DOC-DPF system was increased, exhaust pressure acting on the inlet decreases and velocity distribution was shifted to one side. When inlet pipe was set to axial center of DOC-DPF system velocity distribution was symmetric. However, flow was not dissipated until the front end of DOC and showed higher uniformity index. When the volume of DOC was reduced while fixed volume of entire DOC-DPF system and baffle plate is located downstream of the DOC-DPF system, there was improvement in uniformity index.

Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계 (Dynamics and die design in continuous and patch slot coating processes)

  • 김수연;심서훈;신동명;이주성;정현욱;현재천
    • 한국유변학회:학술대회논문집
    • /
    • 한국유변학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

Peak Discharge Change by Dirrerent Design Rainfall on Small Watershed

  • Jun, Byong-Ho;Jang, Suk-Hwan
    • Korean Journal of Hydrosciences
    • /
    • 제3권
    • /
    • pp.97-104
    • /
    • 1992
  • To design the minor structures in the small watersheds, it is required to calculate the peak discharge. For these calculations the simple peak flow prediction equations, the unit hydrograph method. the syntheic unit hydrograph methods or the runoff simulation models are adopted. To use these methods it is generally requried to know the amount and the distributions of the design rainfall; which are the uniform distribution, the trangular distribution, the trapezoidal distribution, or the Huff type distribution. In this study, the peak discharges are calculated by the different rainfall distributions and the results are compared.

  • PDF

전산 유체 역학(CFD)을 이용한 원형 양식 사육 수조 내부 유동장 해석 (Analysis of land-based circular aquaculture tank flow field using computational fluid dynamics (CFD) simulation)

  • 권인영;김태호
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.395-406
    • /
    • 2020
  • The objectives of this study were to develop the optimal structures of recirculating aquaculture tank for improving the removal efficiency of solid materials and maintaining water quality conditions. Flow analysis was performed using the CFD (computational fluid dynamics) method to understand the hydrodynamic characteristics of the circular tank according to the angle of inclination in the tank bottom (0°, 1.5° and 3°), circulating water inflow method (underwater, horizontal nozzle, vertical nozzle and combination nozzle) and the number of inlets. As the angle in tank bottom increased, the vortex inside the tank decreased, resulting in a constant flow. In the case of the vertical nozzle type, the eddy flow in the tank was greatly improved. The vertical nozzle type showed excellent flow such as constant flow velocity distribution and uniform streamline. The combination nozzle type also showed an internal spiral flow, but the vortex reduction effect was less than the vertical nozzle type. As the number of inlets in the tank increased, problems such as speed reduction were compensated, resulting in uniform fluid flow.