• 제목/요약/키워드: Uniform Wall Thickness

검색결과 72건 처리시간 0.021초

Preparation of Large Area $TiO_2$ Thin Films by Low Pressure Chemical Vapor Deposition

  • 전병수;이중기;박달근;신세희
    • 한국재료학회지
    • /
    • 제4권8호
    • /
    • pp.861-869
    • /
    • 1994
  • Chemical vapor deposition using titanium tetra isopropoxide(TTIP) was employed to investigate effects of process parameters on the uniformity of $TiO_{2}$this films deposited on Indium Tin Oxide (ITO)coated glass. Deposition experiments were carried out at temperatures ranging from $300^{\circ}C$ to $400^{\circ}C$ under the pressure of 0.5~2 torrin a cold wall reactor which can handle 200mm substrate. It was found that the growth rate of $TiO_{2}$was closely related to the reaction temperature and the ractant gas compositions. Apparent activation energy for the deposition rate was 62.7lkJ/mol in the absence of $O_{2}$ and 100.4kj/mol in the presence of $O_{2}$, respectively. Homogeneous reactions in the gas phase were promoted when the total pressure of the reactor was increased. Variance in the film thickness was less than a few percent, but at high deposition rates film thickness was less uniform. Effects of reaction temperature on $TiO_{2}$ thin film characteristic was investigated with SEM, XRD and AES.

  • PDF

불균일 측벽두께 Jar의 곡률반경에 따른 CAE 해석 (CAE Analysis on the Radius Curvature of Ununiformed wall-thickness Jar)

  • 신남호;최석종
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1040-1046
    • /
    • 2006
  • 본 논문에서는 다양한 곡률반경의 연속에 의하여 살 두께 차가 큰 사출성형품이 불균일한 수축에 의한 변형 발생에 대하여 연구하였다. SAN 및 PMMA 재질의 Jar에 대한 균일냉각구조와 최적성형조건을 CAE 해석에서 구하여 금형설계에 적용하고자 사출성형의 중요인자인 사출압력, 수지온도, 금형온도, 냉각조건 등을 Moldflow 프로그램에서 사출압력, 수지온도, 냉각속도 등에 의한 변형 및 불량현상을 분석하였고 이들을 극소화시킬 수 있는 냉각구조와 사이클 시간을 단축시킬 수 있는 사출성형조건을 제시하였다.

  • PDF

Ti-6Al-4V합금의 형상 링 압연 공정설계 (Process Design for Profile Ring Rolling of Ti-6Al-4V Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.357-360
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was designed by finite element(FE) simulation and experimental analysis. The design includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

  • PDF

Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels

  • Chavan, Shivaji G.;Lal, Achchhe
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.21-49
    • /
    • 2018
  • In this paper, geometric nonlinear bending characteristics of single wall carbon nanotube reinforced composite (SWCNTRC) doubly curved shell panels subjected to uniform transversely loadings are investigated. The nonlinear mathematical model is developed for doubly curved SWCNTRC shell panel on the basis of higher-order shear deformation theory and Green- Lagrange nonlinearity. All nonlinear higher order terms are included in the mathematical model. The effective material properties of SWCNTRC are estimated by using Eshelby-Mori-Tanaka micromechanical approach. The governing equation of the shell panel is obtained using the total potential energy principle and a Newton-Raphson iterative method is employed to compute the nonlinear displacement and stresses. The present results are compared with published literature. The effect of SWCNT volume fraction, width-to-thickness ratio, radius-to-width ratio (R/a), boundary condition, linear and nonlinear deflection, stresses and different types of shell geometry on nonlinear bending response is investigated.

일정온도로 가열되는 원통 형상 슬러지 박막의 건조에 대한 3차원 해석 (Three-Dimensional Analysis on Drying Process of a Cylindrical Thin Film Layer of Sludge under Uniform Heating)

  • 이공훈;김욱중
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1326-1331
    • /
    • 2009
  • Drying process in the cylindrical thin film layer of sludge with the thickness less than a few millimeters has been investigated. Thin film drying is specially designed and used to dry the viscous materials like sewage sludge. The thin film layer of sludge is dried on the metallic cylindrical surface through which thermal energy is supplied to the layer during drying. The wall temperature is assumed to be constant during drying in the present study for the simplification. In order to solve the equations, the mass transfer rate on the drying surface should be determined. The mass flux of evaporated water vapor on the surface is estimated with the formulation given in the literature. The effect of some physical parameters on drying has been examined to figure out the drying characteristics of the sludge layer.

  • PDF

양극산화법으로 제작한 TiO2 나노튜브 박막의 구조 및 광전기화학 특성 분석 (Study on the Structure and Photoelectrochemical Properties of Anodized TiO2 Nanotube Films)

  • 이아름;박상현;김재엽
    • 센서학회지
    • /
    • 제27권4호
    • /
    • pp.264-268
    • /
    • 2018
  • Vertically-aligned $TiO_2$ nanotube electrodes have attracted considerable attention for applications in solar cells, catalysts, and sensors, because of their ideal structure for electron transport and electrolyte diffusion. Here, we prepare vertically-aligned $TiO_2$ nanotube electrodes using a two-step anodization process. The prepared $TiO_2$ nanotube electrodes exhibit uniform pore structures with an inner diameter of ~80-90 nm and wall thickness of ~20-25 nm. In addition, they exhibit an anatase crystal phase after a high-temperature annealing. The annealed $TiO_2$ nanotube electrodes are applied in dye-sensitized solar cells (DSSCs) as photoanodes. The fabricated DSSC exhibits conversion efficiencies of 3.46 and 2.15% with liquid- and gel-type electrolytes, respectively.

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • 제26권1호
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.

타이타늄합금 형상 링 압연공정 연구 (A Study on Profile Ring Rolling Process of Titanium Alloy)

  • 염종택;김정한;이동근;박노광;최승식;이종수
    • 소성∙가공
    • /
    • 제16권4호
    • /
    • pp.223-228
    • /
    • 2007
  • The profile ring rolling process of Ti-6Al-4V alloy was investigated by finite element(FE) simulation and experimental analysis. The process design of the profile ring rolling includes geometry design and optimization of process variables. The geometry design such as initial billet and blank sizes, and final rolled ring shape was carried out with the calculation method based on the uniform deformation concept between the wall thickness and ring height. FEM simulation was used to calculate the state variables such as strain, strain rate and temperature and to predict the formation of forming defects during ring rolling process. Finally, the mechanical properties of profiled Ti-6Al-4V alloy ring product were analyzed with the evolution of microstructures during the ring rolling process.

Synthesis of Hollow Silica by Stöber Method with Double Polymers as Templates

  • Nguyen, Anh-Thu;Park, Chang Woo;Kim, Sang Hern
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.173-176
    • /
    • 2014
  • The hollow $SiO_2$ spheres with uniform size were synthesized by a modified Stober method under the control of polyelectrolytes (PSS and PAA) as templates. This synthetic route includes the formation of spherical colloid micelle in ethanol solution, hydrolysis of TEOS under control of ammonia, and the removal of polyelectrolyte by washing or calcination. Hollow silica spheres with controllable core diameters between 100 and 270 nm and wall thickness between 15 and 50 nm have been synthesized. The influence of template solution concentration and solvent and dispersant on the formation of silica hollow spheres is studied and reported in detail.

감육된 급수가열기 튜브의 두께 방향 온도차이에 의해 발생하는 열응력 평가 (Thermal Stress Estimation due to Temperature Difference in the Wall Thickness for Thinned Feedwater Heater Tube)

  • 딘홍보;유종민;윤기봉
    • 에너지공학
    • /
    • 제28권3호
    • /
    • pp.1-9
    • /
    • 2019
  • 화력발전소에서 사용되는 급수 가열기 튜브에서는 사용중에 두께 감육이 발생하여 수명이 소진된다. 감육에 의한 파열 우려가 있으면 수명이 종료되는데, 파열조건을 결정하는 튜브 벽의 응력은 내압에 의한 원주방향 응력의 영향이 가장 큰 것으로 알려져 있지만, 튜브 내외부 온도차이에 의한 열응력에 대한 고려 또한 필요하다. 튜브 두께 방향의 온도차이는 열응력을 발생시켜 튜브의 잔여수명을 단축시키는 영향을 준다. 본 논문에서는 급수가열기 내에서 튜브 내표면과 외표면에 온도 차이가 가장 큰 과열저감구역(de-superheating zone)을 대상으로 열응력을 연구하였다. 원주방향으로 균일하게 감육된 튜브에서 두께방향의 온도차 때문에 발생하는 원주방향 응력, 반경방향 응력 및 온도분포를 평가하기 위한 해석적 수식을 제시하였다. 제시된 해석식의 정확도와 효과를 검증하기 위해 식으로부터의 계산된 결과를 유한요소해석으로 평가한 정확한 결과와 비교하였다. 또한, 유한요소해석으로 편심 감육된 튜브에 대한 응력도 평가하였다. 열응력 해석 및 온도 분포 해석에서 대류열전달 계수의 영향을 분석하기 위해 튜브 내표면 및 외표면에 여러 값의 열대류 계수를 적용하여 해석 결과를 비교하였다. 해석 결과 튜브 내표면보다 외표면의 열대류 계수가 응력 발생에 더 큰 영향을 주는 것으로 나타났다. 열하중만 고려된 경우, 균일 감육과 편심 감육 상태 모두에서 원주방향 응력이 반경방향 응력보다 크게 평가되었다.