• Title/Summary/Keyword: Uniform Testing

Search Result 182, Processing Time 0.031 seconds

Ray Tracing Acceleration Schemes Based on Efficient Data Storage (효율적인 데이터 저장을 기초로 한 광선 추적의 가속화 방안)

  • 최현규;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.8
    • /
    • pp.1270-1281
    • /
    • 1989
  • This paper presents two new storage schemes of 3-D objects to accelerate the finding of the first intersecting object and the shadow computation steps in ray tracing. The 3-D objects which are potentially intersected with the first reflection (refraction)ray are enrolled within a so called reflection (refraction) frustum' for a polygon object. Only those objects registered in the corres ponding frustum are immediately checked for intersection with the secondary rays emanating from the same polygon. The other is called a shadow pyramid' which contains the candidate objects possibly blocking the path from the relevant light source to any point on the relevant polgon. The shadow testing of a point is performed only against the objects contained in the associated shadow pyramid. Despite the cost needed for registration of objects within frusta or shadow pyramids, the total rendering time of ray tracing using the proposed approaches was reduced by approximately 50% (10% in color rendering time and 70% in shadoe testing time) from the conventional cell 50% (10% in color rendering time and 70% in shadow testing time) from the conventional cell traversal scheme under the 3-D uniform subdivision environment due to the fast finding of candidate objects for intersection and the reduced number of intersection calculations.

  • PDF

Deformation Behavior and Dynamic Recrystallization of Torsion-Tested Alloy 718 (Alloy718의 비틀림변형과 동적재결정)

  • Park, N.K.;Kim, C.H.;Kim, N.Y;Lee, D.G.;Yeom, J.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.591-596
    • /
    • 2006
  • Torsion testing was employed to investigate the deformation and recrystallization behavior of coarse-grained Alloy 718, and the results are compared with the compression testing results. Mechanical testing was conducted on bulk Alloy718 samples within the temperature ranges, $1000^{\circ}C{\sim}1100^{\circ}C$. The strain gradient formed in the torsion specimens resulted in a recrystallization behavior which varied along the radial direction from the center to the surface. The flow curves based on effective stress and effective strain as obtained by Fields and Backofen's isotropic deformation theory and the dynamic recrystallization within the compression tested samples and torsion tested samples are different. The different deformation and recrystallization behavior can be rationalized by the fact that the deformation in the coarse-grained torsion specimens is not uniform and thus the strain gradient within the specimens cannot be analytically predicted by FE simulation. Thus, the extent of recrystallization cannot be properly predicted by the established recrystallization equations based on compression tests.

A Study of New Wuick Tool-Life Tesing Method(I) - The Analysis of the Wear Behavior for Carbide Tool - (새로운 급속 工具壽命試驗法에 관한 硏究 (I) - 초경공구의 유동거동 분석-)

  • 오양균;정동윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.223-231
    • /
    • 1986
  • During the past decade, the Quick Tool-Life Testing Method has been studied. However, a generalized theory and testing method for the quantitative measurement of tool wear have not been developed yet. Among many factors to affect the tool wear, the flank wear is regarded as a main factor. In this study, the behavior of the flank wear for carbide tool was studied as a preceding step to present a simple method for Quick Tool-Life Testing, and it was found that the flank wear varies in direct proportion to cutting time, and the following general equation is obtained for the flank wear curves with respect to cutting time and velociety.

A Finite Element Analysis of Deformation-Induced Heating in Tensile Testing of Sheet Metals (박판 인장 시험에서 가공열의 영향에 관한 유한요소 해석)

  • ;Wagoner, R.H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.680-688
    • /
    • 1989
  • A numerical method for analyzing non-isothermal plastic deformation of sheet metals has been developed and sheet tensile tests have been analyzed using a two-dimensional finite element formulation. A modified Bishop`s method is used to solve the thermoplasticity problem in decoupled form at each time step. The accuracy of the analysis is confirmed by comparison with experimental data. The uniform elongation is found is drop by 0.1 to 2.7% at moderate strain rates, while total elongation decreases upto 6.0% during tensile testing in air compared to the isothermal case. The effect of deformation heating, becomes more pronounced as necking develops and at higher testing speed.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Ultrasound Wave Propagation in Thick Composites with Uniform Fiber Waviness (일정한 보강섬유 굴곡이 있는 두꺼운 복합재료에서의 초음파 전파에 관한 연구)

  • Chun, Heoung-Jae;Jang, Pil-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.288-298
    • /
    • 2001
  • There has been a growing interest in thick composite materials especially for primary structures. Fiber waviness is one of the manufacturing defects frequently encountered in thick composite structures and affects the mechanical properties such as stiffness and strength significantly. Therefore, nondestructive evaluation technique that can detect fiber waviness of thick composite is very important for the integrity of structures. In this study, efforts were made to understand ultrasonic wave propagation in thick composites with uniform fiber waviness by adopting the ray and plane wave theories. Both theoretical and experimental investigations were conducted to understand the wave propagation in thick composites with uniform fiber waviness. The experiments were conducted on specially fabricated thick composite specimens with various degrees of uniform fiber waviness using the conventional through-transmission method to verify the predicted results. The experimental results showed good agreement with the theoretical predictions.

  • PDF

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

Studies on the Thin Rubber Coated Fabrics. (Part 2) Physical Properties of the Coated Fabric with Rubber Compounds Having Different Viscosity (박막(薄膜) Rubber Coated Fabrics에 관(關)한 연구(硏究)(제2보(第2報)) Viscosity가 다른 배합(配合)고무를 각종(各種) 원반(原反)에 도포(塗布)했을때의 물리적(物理的) 성능(性能)에 대(對)하여)

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Sook-Ja;Rhim, Kwang-Kew
    • Elastomers and Composites
    • /
    • v.1 no.1
    • /
    • pp.49-55
    • /
    • 1966
  • Based upon the results of the previous work, the experiments are concentrated on the improvement of the durability of rubber coated fabrics as a rain garment material. To obtain a much lighter and durable coated fabric, several kinds of light weight cotton prints having almost equal density in warp and fillingwise were chosen. Rubber coating on these prints was made by topping and spreading process using rubber compound of various viscosity, and the physical properties of final product were analysed and interpreted in terms of adhesion and durability. The results are as follows. 1. Any noticeable difference between two coating processes was not found in terms of physical properties. 2. Base fabrics should be dipped once into a dilute rubber compound before coating operation in order to obtain a uniform adhesion and physical properties, and the optimum range of the viscosity of dipping paste are from 100 poise to 200 poise. 3. Generally, the tearing strength of the coated fabrics is inversely proportional to the adhesion. 4. It was assumed that the increase of the water proofness after water immersion on the finished material which have dense base fabric is chiefly due to the swelling of the cellulosic fiber.

  • PDF

Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing

  • Lee, Sojeong;Chang, Ilhan;Chung, Moon-Kyung;Kim, Yunyoung;Kee, Jong
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.831-847
    • /
    • 2017
  • Conventional geotechnical engineering soil binders such as ordinary cement or lime have environmental issues in terms of sustainable development. Thus, environmentally friendly materials have attracted considerable interest in modern geotechnical engineering. Microbial biopolymers are being actively developed in order to improve geotechnical engineering properties such as aggregate stability, strength, and hydraulic conductivity of various soil types. This study evaluates the geotechnical engineering shear behavior of sand treated with xanthan gum biopolymer through laboratory direct shear testing. Xanthan gum-sand mixtures with various xanthan gum content (percent to the mass of sand) and gel phases (initial, dried, and re-submerged) were considered. Xanthan gum content of 1.0% sufficiently improves the inter-particle cohesion of cohesionless sands 3.8 times and more (up to 14 times for dried state) than in the untreated (natural) condition, regardless of the xanthan gum gel condition. In general, the strength of xanthan gum-treated sand shows dependency with the rheology and phase of xanthan gum gels in inter-granular pores, which decreases in order as dried (biofilm state), initial (uniform hydrogel), and re-submerged (swollen hydrogel after drying) states. As xanthan gum hydrogels are pseudo-plastic, both inter-particle friction angle and cohesion of xanthan gum-treated sand decrease with water adsorbed swelling at large strain levels. However, for 2% xanthan gum-treated sands, the re-submerged state shows a higher strength than the initial state due to the gradual and non-uniform swelling behavior of highly concentrated biofilms.

A Study on Near-Field to Far-Field Transformation Using Stratton-Chu Formula (Stratton-Chu 공식을 이용한 측정된 근거리장에서 원거리장으로의 변환에 관한 연구)

  • Lee, Jeong-Seok;Song, Tae-Lim;Du, Jin-Kyoung;Koo, Tae-Wan;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.316-323
    • /
    • 2013
  • This paper deals with the near-field to far-field calculation for far-field characteristics of antenna and electromagnetic compatibility(EMC) testing. Since the conventional EMC testing process is inefficient such as measurements of the wide band signals and mega structures, Stratton-Chu formula is used to predict the far-field emission by simple and direct process. The usefulness of Stratton-Chu formula is verified by comparing to the analytic solution of the uniform distribution aperture in free-space. In order to inspect the far-fields and to get the near-field values, full-wave simulation solver is utilized. Through the full-wave simulation about the patch antenna, calculated far-field results from Stratton-Chu formula are proven. The predicted magnitudes of the far-field are in error by less than 6 %.