• Title/Summary/Keyword: Uniform Stress

Search Result 706, Processing Time 0.022 seconds

Measurement method for profiling residual stress of an optical fiber (광섬유의 잔류응력 측정 방법)

  • 박용우;백문철;진애경;백운출;김덕영
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.219-223
    • /
    • 2003
  • A novel method was proposed for determining the residual stress profile of an optical fiber by using a modified polariscope. Measurement results of the axisymmetric residual stress for a conventional single-mode fiber were demonstrated by using this method. It was found that non-uniform stress is distributed in the cladding of the fiber. This means that large mechanical stress is induced as a function of temperature generated near the neck shape of the fiber preform.

Three-dimensional finite element analysis of the splinted implant prosthesis in a reconstructed mandible

  • Heo, Kyung-Hoi;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.138-146
    • /
    • 2018
  • PURPOSE. The purpose of this study was to analyze the effects of the splinted implant prosthesis in a reconstructed mandible using three-dimensional finite element analysis. MATERIALS AND METHODS. Three-dimensional finite element models were generated from a patient's computed tomography data. The patient had undergone partial resection of the mandible that covered the area from the left canine to the right condyle. The mandible was reconstructed using a fibula bone graft and dental implants. The left mandibular premolars and molars remained intact. Three types of models were created. The implant-supported prosthesis was splinted and segmented into two or three pieces. Each of these models was further subcategorized into two situations to compare the stress distribution around normal teeth and implants. Oblique loading of 300 N was applied on both sides of the mandible unilaterally. The maximum von Mises stress and displacement of the models were analyzed. RESULTS. The stress distribution of the natural mandible was more uniform than that of the reconstructed fibula. When the loading was applied to the implant prosthesis of reconstructed fibula, stress was concentrated at the cortical bone around the neck of the implants. The three-piece prosthesis model showed less uniform stress distribution compared to the others. Displacement of the components was positively correlated with the distance from areas of muscle attachment. The three-piece prosthesis model showed the greatest displacement. CONCLUSION. The splinted implant prosthesis showed a more favorable stress distribution and less displacement than the separated models in the reconstructed mandible.

Synthetic Turbulence Effect in Subsonic Backward Facing Step Flow Using LES (LES을 이용한 후향 계단 유동에서의 Synthetic turbulence 효과 연구)

  • Ahn, Sang-Hoon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • The synthetic turbulence generation model for inlet boundary conditions of subsonic Backward Facing Step (BFS) was investigated. The average u-velocity and Reynolds stress at inlet boundary follows experimental data. Synthetic Eddy Method (SEM), random noise, and uniform flow conditions were implemented relative to the synthetic turbulence generation method. A three dimensional Large Eddy Simulation (LES) was applied for turbulent flow simulation. Turbulent and mean flow characteristics such as flow reattachment length, velocity profiles, and Reynolds stress profiles of BFS were compared with respect to the turbulent effects.

Thermo-Elastic Analysis of the Spatially Reinforced Composite Nozzle (다방향으로 입체 보강된 복합재 노즐의 열탄성해석)

  • 유재석;김광수;이상의;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.100-105
    • /
    • 2002
  • This paper predicts the material properties of spatially reinforced composites (SRC) and analyzes the thermo-elastic behavior of a kick motor nozzle manufactured from that material. To find the appropriate SRC structure for the nozzle throat that satisfies given design conditions, the equivalent material properties of the SRC are predicted using the superposition method for those of rod and matrix. Studied are the elastic behavior, temperature distribution, and thermo-elastic behavior of a kick motor nozzle composed of carbon/carbon SRC as a throat part. The elastic deformation of the nozzle composed of 3D carbon/carbon SRC shows asymmetry in a circumferential direction. However, 4D carbon/carbon SRC nozzle shows uniform deformation in the circumferential direction. Stress concentration in connecting parts of the kick motor nozzle is ultimately high due to the high temperature gradient in each connecting part. The thermo-elastic deformations of both the 3D and the 4D SRC nozzles are uniform in the circumferential direction due to the isotropy of CTE of each SRC. The deformation of the 3D SRC nozzle is a slightly smaller than that of the 4D SRC nozzle in the nozzle throat, which is favorably effective on rocket thrust. The circumferential stress is the most critical component of the kick motor nozzle. The 4D SRC nozzle having 1,1,1,1.7 diameters in each direction has the smallest circumferential stress among several SRC nozzles.

  • PDF

Integrity Evaluation for 3D Cracked Structures(I) (3차원 균열을 갖는 구조물에 대한 건전성 평가(I))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3295-3300
    • /
    • 2012
  • Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model. Nodes are generated by the bubble packing, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze interaction effects of two dissimilar semi-elliptical cracks in a plate subjected to uniform tension.

Buckling and vibration behavior of a non-uniformly heated isotropic cylindrical panel

  • Bhagata, Vinod S.;Pitchaimani, Jeyaraj;Murigendrappa, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.543-567
    • /
    • 2016
  • This study attempts to address the buckling and free vibration characteristics of an isotropic cylindrical panel subjected to non-uniform temperature rise using numerical approach. Finite element analysis has been used in the present study. The approach involves three parts, in the first part non-uniform temperature field is obtained using heat transfer analysis, in the second part, the stress field is computed under the thermal load using static condition and, the last part, the buckling and pre-stressed modal analysis are carried out to compute critical buckling temperature as well as natural frequencies and associated mode shapes. In the present study, the effect of non-uniform temperature field, heat sink temperatures and in-plane boundary constraints are considered. The relation between buckling temperature under uniform and non-uniform temperature fields has been established. Results revealed that decrease (Case (ii)) type temperature variation field influences the fundamental buckling mode shape significantly. Further, it is observed that natural frequencies under free vibration state, decreases as temperature increases. However, the reduction is significantly higher for the lowest natural frequency. It is also found that, with an increase in temperature, nodal and anti-nodal positions of free vibration mode shapes is shifting towards the location where the intensity of the heat source is high and structural stiffness is low.

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

A Study on Failure Modes of Type4 Composite Pressure Cylinders according to Shapes of Domes (Type4 복합재 용기의 돔 형상에 따른 파열형태에 관한 연구)

  • Cho, Sungmin;Kim, Kwang Seok;Cho, Min-sik;Lee, Sun-kyu;Lee, Seung-kuk;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.13-18
    • /
    • 2017
  • In this work the augmented safety of Type 4 composite vessel in accordance with uniform-stress design has been demonstrated through a series of burst tests and structural analyses. For this end, three sample vessels were used: (1) designed as guided by the isotensoid dome theory (called iso-dome cylinder); (2) with dome longer compared to uniform-stress design (called prolate cylinder); and (3) with dome wider than uniform-stress design (called oblate cylinder). Structural analyses have been performed using ABAQUS finite element code based on the periodic symmetry to circumferential direction. As a result, the maximum stresses are induced around the bodies of all three cylinders. However, the analyses, with the assumption of possible defect demonstrate that the maximum stresses are induced around the dome knuckles for the prolate and the oblate cylinders. The results of the burst tests for the three cylinders show that the burst initiates from the cylinder body of the iso-dome cylinder and from the dome knuckles of the prolate and the oblate cylinders. Finally, it is recommended that, to comply with DOT CFFC 2007, the dome shape should be designed and fabricated as guided by the isotensoid dome theory.

A study on the deformation of a bubble and a drop in a uniform electric field (균일전기장에 의한 기포와 액적의 변형에 관한 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Seok;Cho, Hae-Jung;Kim, Suk-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2023-2035
    • /
    • 1996
  • In the present study, the characteristics of the electrical deformation of a bubble and a drop under a uniform electric field have been investigated to understand EHD heat transfer enhancement by an electric field. The deformation of the bubble and the drop have been studied theoretically using an electric normal stress acting on their interfaces and assured by the numerical analysis and the experiment. From the variation of bubble volume and free energy, it is found that a bubble is compressed in an electric field and free energy had larger value with increasing W and the permittivity of a dielectric fluid. The electric normal stress induced on the interface of the bubble and the drop is different. Because of the surface charge induced at the drop interface, the electric normal stress acting on the drop is much larger than that of the bubble. The drop is, therefore, deformed much more than the bubble. In addition, the experimental and numerical results show that the aspect ratio and the contact angle of the bubble increase with increasing W.

A Near-tip Grid Refinement for the Effective and Reliable Crack Analysis by Natural Element Method (효율적이고 신뢰성있는 자연요소 균열해석을 위한 균열선단 그리드 세분화기법)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.183-190
    • /
    • 2019
  • This paper introduces a near-tip grid refinement and explores its usefulness in the crack analysis by the natural element method(NEM). As a sort of local h-refinement in finite element method(FEM), a NEM grid is locally refined around the crack tip showing high stress singularity. This local grid refinement is completed in two steps in which grid points are added and Delaunay triangles sharing the crack tip node are divided. A plane strain rectangular plate with symmetric edge cracks is simulated to validate the proposed local grid refinement and to examine its usefulness in the crack analysis. The crack analysis is also simulated using a uniform NEM grid for comparison. Unlike the uniform grid, the refined grid provides near-tip stress distributions similar to the analytic solutions and the fine grid. In addition, the refined grid shows higher convergence than the uniform grid, the global relative error to the total number of grid points.