• Title/Summary/Keyword: Uniform Stress

Search Result 706, Processing Time 0.027 seconds

Evaluation for Soil Moisture Stabilization and Plant Growth Response in Horizontal Biofiltration System Depending on Wind Speed and Initial Soil Moisture (풍속과 초기 토양수분에 따른 평면형 바이오필터 내 토양수분 안정화 및 식물 생육반응 평가)

  • Choi, Bom;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.27 no.5
    • /
    • pp.546-555
    • /
    • 2014
  • The final aim of this study is to develop a biofiltration system integrated with plant vegetation for improving indoor air quality effectively depending on indoor space and characteristics. However, to approach this final goal, several requirements such as constant pressure drops (PDs) and soil moisture contents (SMCs), which influence the capacity design for a proper ventilation rate of biofiltration system, should be satisfied. Thus, this fundamental experiment was carried out to adjust a proper wind speed and to ensure a stabilization of initial SMCs within biofilter for uniform distribution of SMCs and PDs, and for normal plant growth, especially avoiding root stress by wind. Therefore, we designed horizontal biofliter models and manufactured them, and then calculated the ventilation rate, air residence time, and air-liquid ration based on the biofilter depending on three levels of wind speed (1, 2, and $3cm{\cdot}s^{-1}$). The relative humidity (RH) and PD of the humidified air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of lettuce and duffy fern grown within biofilter were measured depending on the three levels of wind speed. As a result of wind speed test, $3{\cdot}sec^{-1}$ was suitable to keep up a proper RH, SMC, and plant growth. Thus, the next experiment was set up to be two levels of initial SMCs (low and high initial SMC, 18.5 and 28.7%) within each biofilter operated and a non-biofiltered control (initial SMC, 29.7%) on the same wind speed ($3cm{\cdot}sec^{-1}$), and measured on the RH and PD of the air coming out through the soil within the biofilter, and SMC of the soil and plant growth parameters of Humata tyermani grown within biofilter. This result was similar to the first results on RHs, SMCs, and PDs keeping up with constant levels, and three SMCs did not show any significant difference on plant growth parameters. However, two biofiltered SMCs enhanced dry weights of the plants slightly than non-biofiltered SMC. Thus, the stability of this biofiler system keeping up major physical factors (SMC and PD) deserved to be adopted for designing an advanced integrated biofilter model in the near future.

A Study on the Christian Learning Environmental Arrangement in Church Educational Space (교회 교육공간에 관한 기독교교육적 환경구성)

  • Woo, Ji Yeon
    • Journal of Christian Education in Korea
    • /
    • v.62
    • /
    • pp.313-334
    • /
    • 2020
  • As an element of education, the educational space cannot be separated from the purpose of education. The place of education is not only the passage to deliver actual curriculum, but also the purpose itself that can be accomplished through educational content. That is because the purpose of education cannot be achieved only with instructors, students, curriculum, and methods, but requires a change in the perception of the educational space that represents the goal and the place where it all can be implemented. Nevertheless, the problem that lies with educational space is easy to be overlooked and it has been rather considered as an issue related to the finances or scale of the church. The church educational space gives birth to faith and growth, where spiritual development and experience may occur. However, the reality follows the drawbacks of conventional school classroom arrangements and structures. In addition, even if the church educational space can be arranged according to the needs of its students, it cannot deviate much from the standard uniform format. In particular, the basic environment of church educational space is similar to that of standard school system in terms of arrangement of furniture such as chairs, desks, and its physical structure. As the school system was originally designed and tailored for the purpose of delivering knowledge and standardization, the space for church education must stay away from it. Humans are born and die in a space, where encounter with God also happens. Also, communication with God causes spacial conversion to humans, changing the place of their visitation. So the church educational space must be more meticulously designed and comprehensive than that of school which pursues physical, educational, psychological, social, and artistic purposes because the church educational space pursues the liturgical elements, as well. Therefore, the Christian learning environmental arrangements must seek liturgical elements, which is the major Christian value, by placing Christian artwork or symbols for church visitors. So in this research, I want to stress the role of Christian educational space for spiritual growth and pursue intrinsic and extrinsic changes in learning environment, leading to a greater awareness of the Christian educational space.

CNT-Ni-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices (차세대 웨어러블 디바이스를 위한 높은 기계적/전기적 특성을 갖는 CNT-Ni-Fabric 유연기판)

  • Kim, Hyung Gu;Rho, Ho Kyun;Cha, Anna;Lee, Min Jung;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.39-44
    • /
    • 2020
  • Recently, numerous researches are being conducted in flexible substrate to apply to wearable devices. Particularly, Conductive substrate researches that can implement the wearable devices on clothing are massive. In this study, we formed fiber substrate spraying CNT and Pd mixed solution on it and plated metal layer with electroless plating. Used SEM equipment and EDS analysis to analysis structure of the plated fiber substrate and discovered Ni layer was created. For check electrical properties, mapping was performed to check surface resistance and distribution of resistance of electroless plated fiber substrate with 4-point probe. It was confirmed that conductivity was improved as the duration of electroless plating was increased, and it was found that distribution of resistance by surface location was uniform. Changes in resistance due to mechanical stress were measured through tensile, bending, and twisting tests. As a result, it was confirmed that resistance change of flexible substrate gradually disappeared as plating time increased. Using UTM (Universal testing machine), it was analyzed mechanical properties of the electroless plated substrate with respect to changes in plating time were improved. In the case of conductive fiber substrate in which electroless plating was performed for 2 hours, tensile strength was increased by 16 MPa than fiber substrate. Based on these results, we found that Ni-CNT-Fabric flexible substrate is adequate for clothing-intergrated conductive substrate and we positively expect that this experiment shows flexible substrate can adapt to and develop not only a wearable device technology but also other fields needing flexibility such as battery, catalyst and solar cell.

Failure Behavior and Separation Criterion for Strengthened Concrete Members with Steel Plates (강판과 콘크리트 접착계면의 파괴거동 및 박리특성)

  • 오병환;조재열;차수원
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 2002
  • Plate bonding technique has been widely used in strengthening of existing concrete structures, although it has often a serious problem of premature falure such as interface separation and rip-off. However, this premature failure problem has not been well explored yet especially in view of local failure mechanism around the interface of plate ends. The purpose of the present study is, therefore, to identify the local failure of strengthened plates and to derive a separation criterion at the interface of plates. To this end, a comprehensive experimental program has been set up. The double lap pull-out tests considering pure shear force and half beam tests considering combined flexure-shear force were performed. The main experimental parameters include plate thickness, adhesive thickness, and plate end arrangement. The strains along the longitudinal direction of steel plates have been measured and the shear stress were calculated from those measures strains. The effects of plate thickness, bonded length, and plate end treatment have been also clarified from the present test results. Nonlinear finite element analysis has been performed and compared with test results. The Interface properties are also modeled to present the separation failure behavior of strengthened members. The cracking patterns as well as maximum failure loads agree well with test data. The relation between maximum shear and normal stresses at the interface has been derived to propose a separation failure criterion of strengthened members. The present study allows more realistic analysis and design of externally strengthened flexural member with steel plates.

Laterally Unbraced Length for Preventing Inelastic Lateral-Torsional Buckling of High-Strength Steel Beams (고강도 강재보의 비탄성 횡-비틀림좌굴 제어를 위한 횡지지 거리)

  • Park, Chang Hee;Lee, Cheol Ho;Han, Kyu Hong;Kim, Jin Ho;Lee, Seung Eun;Ha, Tae Hyu;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.115-130
    • /
    • 2013
  • In this study, lateral-torsional buckling (LTB) strength of high-strength H-beams built up from 800MPa tensile-strength steel was experimentally and analytically evaluated according to current lateral stability provisions (KBC 2009, AISC-LRFD 2010). The motivation was to evaluate whether or not current LTB provisions, which were originally developed for ordinary steel with different stress-strain characteristics, are still applicable to high-strength steel. Two sets of compact-section specimens with relatively low (Set A) or high (Set B) warping stiffness were prepared and tested under uniform moment loading. Laterally unbraced lengths of the test specimens were controlled such that inelastic LTB could be induced. All specimens exhibited LTB strength exceeding the minimum limit required by current provisions by a sufficient margin. Moreover, some specimen in Set A reached a rotation capacity required for plastic design, although its laterally unbraced length belonged to the inelastic LTB range. All the test results indicated that extrapolation of current provisions to high-strength steel is conservative. In order to further analyze the test results, the relationship between inelastic moment and laterally unbraced length was also derived in explicit form for both ordinary- and high-strength steel based on the effective tangent modulus of inelastic section. The analytical relationship derived again showed that extrapolation of current laterally unbraced length limit leads to a conservative design in the case of high-strength steel and that the laterally unbraced length to control the inelastic LTB behavior of high-strength steel beam should be specified by including its unique post-yield strain-hardening characteristics.

Determination of Trend of a Radial Distribution of Moisture Content within a Log Cross Section by Oven-Drying of Circumferential Slices(II) - For some of domestic softwoods - (원주상(圓周狀)슬라이스의 오-븐건조법에 의한 함수율의 원반(圓盤)내 방사방향분포 추이 평가 (II) - 주요 국산 침엽수재를 중심으로 -)

  • Lee, Nam-Ho;Li, Chengyuan;Choi, Jun-Ho;Hwang, Ui-Do;Jin, Young-Moon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • This study was carried out to investigate a radial distribution of moisture contents (MCs) within a log cross section (LC) during oven-drying of 3 mm-thick circumferential slices cut from several domestic softwoods LCs.For Korean red pine, drying rate of sapwood slices during oven-drying represented much higher values than that of heartwood slices, and so sapwood with higher green MC early reached below fiber saturation point (FSP) rather than heartwood did. However, this distribution of moistures did not last for long duration. For Japanese larch, green MC of sapwood was approximately three times higher than that of heartwood. This similar distribution in MC was lasted until about 20% average MC. The MC was around uniform throughout the sapwood of Ginkgo when green and during oven-drying, although it was somewhat fluctuated. For Japanese cedar, the heartwood with so low moistures around FSP would begin to shrink from the beginning stage of drying, but the sapwood above hygroscopic MC prevents the heartwood from shrinking, and consequently, the heartwood or the transition wood goes into tension stress. The results for Japanese cypress showed that the green MCs of the sapwoods were much lower than those for heartwoods, and then this trend was continued until about 20% in average MC. For Chinese thuja, the green MCs of sapwoods were about 2 times as high as those of heartwood, but this along the radial gradient in MC rapidly became gentle during oven-drying.