• Title/Summary/Keyword: Uniform Components

Search Result 325, Processing Time 0.026 seconds

Production of Nitric Oxide by Siegesbeckia Glabrescens is Associated with Apoptosis of Vascular Smooth Muscle Cell (희렴의 Nitric Oxide 유리를 통한 평활근세포에서의 Apoptosis유도)

  • Jun Soo Young;Shin Dong Hoon;Son Chang Woo;Shin Heung Mook
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1055-1060
    • /
    • 2004
  • Apoptosis is the ability of cells to self-destruct by the activation of an intrinsic cellular suicide program when the cells are no longer needed or when they are seriously damaged. Morphologically, apoptosis is characterized by the appearance of membrane blebbing, cell shrinkage, chromatin condensation, DNA cleavage, and the fragmentation of the cell membrane-bound apoptotic bodies. Siegesbeckia glabrescens Makino (Siegesbeckiae Herba, SG) has been widely used as treatments for arthritis, and fever, as well as detoxification properties. The present studies were undertaken to evaluate if SG has an anti-apoptotic property. Cell viability was measured by XTT and tryphan blue stain. Morphological characteristic of human aortic smooth muscle cells(HASMC) were visualized with a phase-contrast microscope. SG significantly reduced HASMC, but not human umbilical vein endothelial cell(HUVEC), viability in a dose-dependent manner. Confluent untreated cells at 24hrs showed normal morphology, flat with a uniform polygonal shape. SG-treated cells (0.5㎎/㎖) at 24hrs showed apoptotic morphology. Cells became irregular with elongated lamellipodia, and exhibited condensed chromatin in nuclei with occasional endoucleation. There was an increase in the number of apoptotic cells rounding-up and being detached from the substrate. TUNEL staining of SG-treated cells showed dark-brown stains in nuclei and cytosol. Caspases are central components of the machinery responsible for apoptosis and are generally divided into two categories; the initiator caspases, which include caspases-2,-8,-9, and -10, and the effector caspases, which include caspases-3,-6, and -7. SG decreased anti-caspase-3 protein expression, which means activation of caspases-3 activity. It has been reported that there is a link between NO formation and apoptosis. NO production was accelerated by SG treatment in HASMC. L-NNA, NOS inhibitor, inhibited SG-induced apoptosis. These results, therefore, indicated that both caspases-3 and NO production are involved in apoptosis in smooth muscle cells. According to these results, SG may have a potential effect in the treatment of hypertensive atherosclerosis.

The importance of NIR spectroscopy in the estimation of nutritional quality of grains for ruminants

  • Flinn, Peter C.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1612-1612
    • /
    • 2001
  • The production of grain for export and domestic use is one of Australia's most important agricultural industries, and the NIR technique has been used extensively over many years for the routine monitoring of grain quality, particularly moisture and protein content. Because most Australian grain is intended for human food production, the determinants of grain quality for livestock feed, apart from protein, have been largely ignored. However the increasing use of grain for feeding to pigs, poultry, beef cattle and dairy cows has led to an important national research project entitled “Premium Grains for Livestock”. Two of the objectives of this project are to determine the compositional and functional characteristics of grains which influence their nutritional quality for the various classes of livestock, and to adopt rapid and objective analytical tests for these quality criteria. NIR has been used in this project firstly to identify a set of grain samples from a large population of breeders' lines which showed a wide spectral variation, and hence a potentially wide variation in nutritional value. The selected samples were not only subjected to an extensive array of chemical, physical and in vitro analyses, but also were grown out to produce sufficient quantities of grain to feed to animals in vivo studies. Additional grains were also strategically selected from farms in order to include the effect of weather damage, such as rain, drought and frost. In this study to date, NIR calibrations have been derived or attempted, on both ground and whole grains, for in vivo dry matter digestibility (DMD), pepsin-cellulase dry matter disappearance, protein, fat, acid detergent fibre, neutral detergent fibre, starch, in sacco DMD and in vitro assays to simulate starch digestion in the lumen and small intestine. Results so far indicate high calibration accuracy for chemical components (SECV 0.3 to 2.6%) and very promising statistics for in vivo DMD (SECV 1.8, $R^2$ 0.93, SD 7.0, range 61.9 to 92.3, n=60). There appears to be some potential for NIR to estimate some in vitro properties, depending upon the accuracy of reference methods and appropriate sample populations. Current work is in progress to extend the range of grains with in vivo DMD values (a very laborious and expensive process) and to increase the robustness of the various NIR calibrations, with the aim of implementing uniform testing procedures for nutritional value of grains throughout Australia.

  • PDF

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.

Leaf spray effect of liquid complex fertilizers on ripening of rice (액비엽면철포(液肥葉面撤布)의 수도등숙향상(水稻登熟向上) 효과(効果))

  • Shim, Sang Chil;Kim, Moo Sung;Lee, Soung Woo;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.2
    • /
    • pp.65-70
    • /
    • 1976
  • The effect of leaf spray ($80{\ell}$ of 100 times diluted solution per 10a) of three liquid complex fertilizers (Compresal 1 and 2. and 3P) on rice (var, Minehikari) at 10 days before and after heading and 20 days after heading in a farmer's field was investigated by yield components and flag leaf analysis. 1. Leaf spray significantly increased filled grain ratio (at 10% level) and harvest index (at 5% level) suggesting significant yeild increase in uniform field condition. 2. Phosphorus content of flag leaf was in deficient range and increased by leaf spray while iron content was decreased indicating that liquid complex fertilizer supplied phosphorus which ratards iron translocation to the upper leaves. 3. Higher manganese content in flag leaf by leaf spray (significant at 5% level) suggests that phosphorus stimulates manganese translocation to the upper leaves resulting in favorable Fe/Mn balance. 4. Nitrogen concentration in flag leaf was in the insufficient range suggesting that nitrogen in liquid complex fertilzer had to be a nitrogen supply source. 5. In flag leaf calcium concentration was increased by leaf spray but that of boron and zinc was decreased.

  • PDF

An Assessment of Air Sampling Location for Stack Monitoring in Nuclear Facility (원자력시설 굴뚝 내 공기시료채취 위치의 적절성 평가)

  • Lee, JungBok;Kim, TaeHyoung;Lee, JongIl;Kim, BongHwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and $10{\mu}m$ aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

Effect of implant- and occlusal load location on stress distribution in Locator attachments of mandibular overdenture. A finite element study

  • Alvarez-Arenal, Angel;Gonzalez-Gonzalez, Ignacio;deLlanos-Lanchares, Hector;Martin-Fernandez, Elena;Brizuela-Velasco, Aritza;Ellacuria-Echebarria, Joseba
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.371-380
    • /
    • 2017
  • PURPOSE. The aim of this study is to evaluate and compare the stress distribution in Locator attachments in mandibular two-implant overdentures according to implant locations and different loading conditions. MATERIALS AND METHODS. Four three-dimensional finite element models were created, simulating two osseointegrated implants in the mandible to support two Locator attachments and an overdenture. The models simulated an overdenture with implants located in the position of the level of lateral incisors, canines, second premolars, and crossed implant. A 150 N vertical unilateral and bilateral load was applied at different locations and 40 N was also applied when combined with anterior load at the midline. Data for von Mises stresses in the abutment (matrix) of the attachment and the plastic insert (patrix) of the attachment were produced numerically, color-coded, and compared between the models for attachments and loading conditions. RESULTS. Regardless of the load, the greatest stress values were recorded in the overdenture attachments with implants at lateral incisor locations. In all models and load conditions, the attachment abutment (matrix) withstood a much greater stress than the insert plastic (patrix). Regardless of the model, when a unilateral load was applied, the load side Locator attachments recorded a much higher stress compared to the contralateral side. However, with load bilateral posterior alone or combined at midline load, the stress distribution was more symmetrical. The stress is distributed primarily in the occlusal and lateral surface of the insert plastic patrix and threadless area of the abutment (matrix). CONCLUSION. The overdenture model with lateral incisor level implants is the worst design in terms of biomechanical environment for the attachment components. The bilateral load in general favors a more uniform stress distribution in both attachments compared to a much greater stress registered with unilateral load in the load side attachments. Regardless of the implant positions and the occlusal load application site, the stress transferred to the insert plastic is much lower than that registered in the abutment.

Theoretical Evaluation of the Post Tensioning Effect in Continuous Slabs (연속 슬래브의 포스트 텐셔닝 보강에 대한 이론적 분석)

  • Kim, Chang-Hyuk;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.105-116
    • /
    • 2009
  • Reinforced concrete (RC) structures have been most widely used because of their good economic efficiency. However, it is very weak in tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. On the other hand, it is generally known that prestressed concrete structures can be the most effective to overcome the demerits of RC structures by using various tendon lay-out and its amount. In the prestressed concrete members, the inflection points of tendons should be placed effectively for the deflection control and the moment reduction. Therefore, in this study, the equations of tendon profiles are derived in terms of polynomials that satisfy essential conditions of tendon geometries such as inflection points and natural curved shapes of tendons placed in continuous members, from which vertical components of prestressing forces can be also calculated. The derived high order polynomial expression for the distributed shape of the upward and downward forces was transformed to an simplified equivalent uniform vertical force in order to improve the applicability in the calculation of member deflection. The influences of vertical forces by tendons to deflection and moment in a continuous slab were also considered depending on the distance from column face to the location of tendons. The applicability of the proposed method was examined by an example of deflection calculation for the cases of slabs with and without tendons, and the efficiency of deflection control by tendons was also quantitatively estimated.

Formation of Hollow Cu Through-Vias for MEMS Packages (MEMS 패키지용 Hollow Cu 관통비아의 형성공정)

  • Choi, J.Y.;Kim, M.Y.;Moon, J.T.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.49-53
    • /
    • 2009
  • In order to investigate the formation behavior of hollow Cu via for MEMS packaging, we observed the microstructure of the Cu vias and measured the average thickness and the thickness deviation with variations of pulse-reverse pulse current density and electrodeposition time. With electrodeposition for 3 hours at the pulse and reverse pulse current densities of $-5\;mA/cm^2$ and $15\;mA/cm^2$, the average thickness and the thickness deviation of the Cu vias were $5\;{\mu}m$ and $0.63\;{\mu}m$, respectively. With increasing the electrodeposition time to 6 hours, it was possible to form the Cu vias, of which the average thickness and thickness variation of the Cu vias were $10\;{\mu}m$ and $1\;{\mu}m$, respectively. With increasing the pulse and reverse pulse current densities to $-10\;mA/cm^2$ and $30\;mA/cm^2$, Cu vias of uniform thickness could not be formed due to the faster increase of the thickness deviation than that of the average thickness with increasing the electrodeposition time.

  • PDF

A Development of Fusion Processor Architecture for Efficient Main Memory Access in CPU-GPU Environment (CPU-GPU환경에서 효율적인 메인메모리 접근을 위한 융합 프로세서 구조 개발)

  • Park, Hyun-Moon;Kwon, Jin-San;Hwang, Tae-Ho;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • The HSA resolves an old problem with existing CPU and GPU architectures by allowing both units to directly access each other's memory pools via unified virtual memory. In a physically realized system, however, frequent data exchanges between CPU and GPU for a virtual memory block result bottlenecks and coherence request overheads. In this paper, we propose Fusion Processor Architecture for efficient access of main memory from both CPU and GPU. It consists of Job Manager, Re-mapper, and Pre-fetcher to control, organize, and distribute work loads and working areas for GPU cores. These components help on reducing memory exchanges between the two processors and improving overall efficiency by eliminating faulty page table requests. To verify proposed algorithm architectures, we develop an emulator based on QEMU, and compare several architectures such as CUDA(Compute Unified Device Architecture), OpenMP, OpenCL. As a result, Proposed fusion processor architectures show 198% faster than others by removing unnecessary memory copies and cache-miss overheads.

Study of high Speed Laser Cutting of LED Module (LED 모듈의 초고속 레이저 절단을 위한 연구)

  • Choi, Won Yong;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • In this study, we conducted the preliminary research for high speed laser cutting of LED module. In particular, the feasibility of ultra-high speed laser cutting of 100 mm/s which exceeds the cutting speed of conventional dicing saw was examined. For this, copper/ceramic and silicone/ceramic hybrid substrates, which are the components of the LED module, were fabricated, and the surface morphology, surface roughness and flexural strength of the laser-cut samples were investigate and compared with the dicing-cut samples. To investigate optimal laser cutting conditions for hybrid substrates, the effects of various laser cutting conditions on cutting surface characteristics were studied using single ceramic and copper substrate. Optimal laser cutting conditions of the hybrid substrates were the use of Ar assist gas, high laser power and high assist gas pressure. Comparing the cutting surface of the hybrid substrates, the surface characteristics of the laser-cut samples are slightly inferior to those of the dicing-cut samples. The average surface roughness of the laser-cut samples was about $9{\mu}m$, and that of the dicing-cut samples was about $4{\mu}m$. However, considering very low cutting speed (3 mm/s) of the dicing saw, the surface morphology of the laser-cut sample was relatively uniform, and the surface roughness was not much different from that of the dicing-cut sample. The flexural strength of the laser-cut samples was equivalent to or slightly inferior to the flexural strength of dicing-cut samples. However, if the laser processing conditions are sufficiently optimized, the ultra-high speed laser cutting of the LED module will be possible.