• Title/Summary/Keyword: Uniform Components

Search Result 322, Processing Time 0.024 seconds

Reaction between Calcium-doped Lanthanum Chromite and Yttria Stabilized Zirconia (칼슘이 첨가된 란탄-아크롬산 염과 이트리아 안정화 지르코니아 계면간의 반응)

  • Choe, Jin-Sam
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.460-464
    • /
    • 2001
  • The ceramic diffusion coupling with the green body of calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$CLC- G) and sintered calcium-doped lanthanum chromite(La$_{0.8}$Ca$_{0.2}$CrO$_3$ CLC) by Pechini's method on yttria stabilized zirconia(YSZ) plate has been investigated. The X-ray diffraction pattern of CLC sides at the reacted CLC-G/ CLC and CLC/YSZ interface were identified as La$_{1-x}$ Ca$_{x}$CrO$_3$ and the unreacted YSZ side was cubic-ZrO$_2$ at the treated condition, 1300~1500 C for 10 hr in air, respectively. The order of migration components between CLC/YSZ interface was Zr>La>>Cr>>>Ca and these changes were not dependent upon the treated conditions. The grain shape and size at the interface of CLC-G/CLC was appeared to have a uniform distribution with increasing temperature. The bonding reaction of YSZ/CLC was occurred without a large amount change of the compositions in SEM photos.os.otos.os.

  • PDF

Occupational Health Care Management Model in Small Scale Enterprises (소규모 사업장 보건관리 모델개발에 관한 연구)

  • Yun, Soon-Nyung;Jung, Hye-Sun
    • Research in Community and Public Health Nursing
    • /
    • v.12 no.3
    • /
    • pp.647-660
    • /
    • 2001
  • Forming health care management model in small-scale enterprises was the purpose of this study. For the purpose, we tried to investigate the characteristics of small-scale enterprises and analyzed the pattern of their health care management. The results are as follow: 1. The strength of health managing agency and technical supporting program lies in team approach by specialized manpower. However, if the liaison between each part of the organization is not smooth, the overall management will be very difficult. 2. Small scale enterprises are characterized by their short life after the establishment, use of rental building, lack of welfare facilities, weakness in sanitary management and aggregation of factories of similar type of industry. Because of these characteristics, it is very difficult to solve problem basically, such as improvement of working environment. Therefore, it is important to focus on health education and community based approach. 3. Many workers in small-scale factories are in middle and old age. They have health problems mainly related to personal habits. Implementation of an appropriate health promotion program is needed. 4. The number of workplaces, which should be managed by health managing agent. is increasing rapidly. But the number of health managing agent is limited. In the aspect of the requirement of manpower and equipment, training personal agent is more urgent than founding institutional agent. 5. The uniform method of health management hampers the choice of employer and workers. The types of provision of health management should be diversified. 6. For an efficient management, a frequent visit of personal agent and the following referral to a specialist should be done. The specialists in charge of secondary management are from the field of occupational medicine, occupational hygiene, ergonomics, etc. 7. The health management of small-scale facilities should have six components. They are community-based approach, multi-disciplinary cooperative system, program based on the need of recipient, forming partnership of employer and worker, change of lifestyle, and evidence-based program.

  • PDF

The implementation of interface between industrial PC and PLC for multi-camera vision systems (멀티카메라 비전시스템을 위한 산업용 PC와 PLC간 제어 방법 개발)

  • Kim, Hyun Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.453-458
    • /
    • 2016
  • One of the most common applications of machine vision is quality inspections in automated production. In this study, a welding inspection system that is controlled by a PC and a PLC equipped with a multi-camera setup was developed. The system was designed to measure the primary dimensions, such as the length and width of the welding areas. The TCP/IP protocols and multi-threading techniques were used for parallel control of the optical components and physical distribution. A coaxial light was used to maintain uniform lighting conditions and enhance the image quality of the weld areas. The core image processing system was established through a combination of various algorithms from the OpenCV library. The proposed vision inspection system was fully validated for an actual weld production line and was shown to satisfy the functional and performance requirements.

Counter-Current Flow Limitation Model Based on the Hyperbolic Two-fluid Equations and Interface Shape Function (쌍곡선형 이상유동 방정식과 경계면 모양함수를 이용한 유체기계의 역류유동제한점 예측방법 개발)

  • 정지환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • There are lots of industrial machines of which functions are achieved by operation of multi-phase fluids. Some of them take advantage of the characteristics of counter-current two-phase flow The maximum flow rates of gas and liquid phases which flow in opposite-directions (counter-current flow) are limited by a phenomenon known as a Counter-Current Flow Limitation (CCFL or Flooding) The mass and momentum conservation equations for each Phase were established to build a first-order hyperbolic partial derivative equations system. A new CCFL model is developed based on the characteristic equation of the hyperbolic PDE system. The present model has its applicationto the case in which a non-uniform flow is developed around a square or sharp-edged entrance of liquid phase. The model is able to he used to Predict the operating-limit of components in which mass and heat transfer are taking place between liquid and gas phases.

  • PDF

Chemistry of Talc Ores in Relation to the Mineral Assemblages in the Yesan-Gongju-Cheongyang Area, Korea (충남 예산-공주-청양 지역 활석광석의 광물조합에 따른 화학적 특징)

  • 김건영;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.60-73
    • /
    • 1997
  • The talc of the Daeheung, Pyeongan, and Cheongdang (Shinyang) talc deposits in the Yesan-Gongju-Cheongyang area is a hydrothermal alteration product of serpentinite originated from ultramafic rocks. The mineral assemblages in alteration zones are: serpentine, serpentine-talc, talc, talc-chlorite, talc-phlogopite-chlorite, and talc-tremolite-chlorite. Chemical distributions in both the Al2O3-FeO-MgO system and the immobile elements suggest that the serpentine-talc and talc rocks are the reaction product of ultramafic rocks and silicic hydrothermal solution without addition of other granitic components, whereas chlorite-, phlogopite-, and tremolite-bearing rocks are the metasomatic alteration product of serpentinite by hydrothermal solution affected by granitic gneiss. Discontinuities in the immobile element ratios of mineral assemblages are due to changes in their mineralogy. The relative contents of Al2O3, TiO2, Zr in the talc-phlogopite-chlorite and talc-tremolite-chlorite rocks increase irregularly with increasing phlogopite, tremolite, and/or chlorite contents in contrast to other ore types. But the relative contents of Cr, Ni, and Co are uniform in all the mineral assemblages. Chemistry of each mineral assemblage formed by steatitization of serpentinite suggests that Cr, Co, Ni, MgO, and Fe2O3 are relatively immobile during the alteration, whereas SiO2, Al2O3, CaO, and K2O are highly increased. The contents of chlorite, phlogopite, and tremolite in each mineral assemblage might be controlled by addition of Al2O3, K2O, and CaO, respectively. The high contents of other elements than immobile elements in the altered rocks as compared with unaltered rocks indicate that a large amount of elements were introduced from hydrothermal solution up to about 8∼41% in total mass showing maximum value in the talc-phlogopite-chlorite rock.

  • PDF

Effect of Protective layer on LTCC Substrate for Thin Metal Film Patterns (LTCC 보호층 형성에 따른 박막 전극패턴에 관한 연구)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Jung-Hwan;Yoo, Je-Gwang;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.349-355
    • /
    • 2009
  • Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as $TiO_2$ and $SiO_2$. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.

The Effect of Various Electrolyte Concentrations on Surface and Electrical Characteristic of the Copper Deposition Layer at Anodizing of Titanium Anode (티타늄 음극기지의 양극산화 전해질 농도에 따른 구리전착층 표면 및 전기적 특성에 미치는 효과)

  • Lee, Man-Hyung;Park, Eun-Kwang;Woo, Tae-Gyu;Park, Il-Song;Yoon, Young-Min;Seol, Kyeong-Won
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.747-754
    • /
    • 2008
  • Recently, the requirement for the ultra thin copper foil increases with smaller and miniaturized electronic components. Therefore, it is important to examine the surface state of substrate depending on the processing parameter during the anodic oxidation. This study investigated the effect of the various electrolyte concentrations on anodizing of titanium anode prior to copper electrodeposition. Different surface morphology of anodized titanium was obtained at different electrolytic concentration 0.5 M to 3.0 M. In addition, the effect that the surfaces and the electrical characteristics on the electrodeposited copper layer was observed. In this study, surface anodized in the group containing 0.5M $H_2SO_4$ shows more uniform copper crystals with low surface roughness. the surface roughness and sheet resistance for 0.5M $H_2SO_4$ group were $1.353{\mu}m$ and $0.104m{\Omega}/sq$, respectively.

Outcomes of Closed versus Open Rhinoplasty: A Systematic Review

  • Gupta, Rohun;John, Jithin;Ranganathan, Noopur;Stepanian, Rima;Gupta, Monik;Hart, Justin;Nossoni, Farideddin;Shaheen, Kenneth;Folbe, Adam;Chaiyasate, Kongkrit
    • Archives of Plastic Surgery
    • /
    • v.49 no.5
    • /
    • pp.569-579
    • /
    • 2022
  • Open and closed rhinoplasty are two main approaches to perform nasal modifications. According to current literature, there is no current consensus among plastic surgeons and otolaryngologists on which technique is preferred in terms of aesthetic result, complications, and patient satisfaction. This study uses published research to determine whether open or closed rhinoplasty leads to superior patient outcomes. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for systematic reviews were followed and a literature search was conducted in four databases based on our search strategy. Articles were then imported into COVIDENCE where they underwent primary screening and full-text review. Twenty articles were selected in this study after 243 articles were screened. There were 4 case series, 12 retrospective cohort studies, 1 prospective cohort study, 1 case-control, and 2 outcomes research. There were three cosmetic studies, eight functional studies, and nine studies that included both cosmetic and functional components. Sixteen studies utilized both open and closed rhinoplasty and four utilized open rhinoplasty. Both techniques demonstrated high patient and provider satisfaction and no advantage was found between techniques. Based on available studies, we cannot conclude if there is a preference between open or closed rhinoplasty in terms of which technique leads to better patient outcomes. Several studies determined that open rhinoplasty and closed rhinoplasty leads to comparative patient satisfaction. To make outcome reporting more reliable and uniform among studies, authors should look to utilize the Nasal Obstruction and Septoplasty Effectiveness scale and the Rhinoplasty Outcome Evaluation.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

Characterization of Fuel Cell Stack Using Hydrocarbon Polymer-Silica Composite Membranes (탄화수소계 고분자-실리카 복합막이 적용된 연료전지 스택 성능평가)

  • Hyun Woo Kang;Doo Sung Hwang;Chi Hoon Park;Young Moo Lee
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.127-136
    • /
    • 2023
  • In this study, the electrochemical performance of a 5-layer fuel cell stack using silica composite membranes as polymer electrolyte membranes was evaluated. It was observed that the flow rate of the fuel gases plays a crucial role in stack performance, particularly being mainly dependent on the flow rate of hydrogen. Increasing the flow rate of oxygen resulted in negligible changes in performance, whereas an increase in the flow rate of hydrogen demonstrated performance improvements. However, this led to an imbalance in the ratio of hydrogen to oxygen flow rates, causing significant degradation in stack performance and durability. A decline in stack performance was also observed over time due to the degradation of stack components. This phenomenon was consistently observed in individual unit cells. Based on these findings, it was emphasized that, in addition to optimizing the performance of each component during stack operation, it is important to optimize design and operating conditions for uniform flow rate control. Lastly, the developed silica composite membrane was assessed to have sufficient performance for application in actual fuel cell systems, exhibiting a performance of over 25 W based on maximum power.