• Title/Summary/Keyword: Uniform Components

Search Result 322, Processing Time 0.026 seconds

A Study on the Curvature Characteristic of the Incomplete Composite Girder Considering the Deflection Effect (처짐을 고려한 불완전합성형의 곡률특성에 관한 연구)

  • Yong, Hwan Sun;Kim, Yun Hwan;Park, Yong Chan;Song, Su Yeop
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.803-811
    • /
    • 2002
  • Current composite steel and concrete bridges are designed using full-interaction theory assuming there is no relative slip, between the steel and concrete components along their interface, because of the complexities of partial-interaction analysis techniques. However, in the assessment of existing composite bridges this simplification may not be warranted as it is often necesary to extract the correct capacity and endurance from the structure. This may only be achieved using partial-interaction theory which tuly reflects the behaviour of the structure. In this paper, Parametric analyses have been carried out in order to confirm the partial-interaction curvatures with deflection effect using the finite element method. Therefore, the model is considered for simply supported steel and concrete composite bridges with a uniform distribution of connectors subjected to a single concentrated load. For the case studies, this study applicate a parameters such as the number and space of stud shear connector and elastic modulus of concrete slabs. From this study, it is known that partial-interaction effect was in the increase to the increasing the deflection of composite bridges, and stiffness and strength of slab concrete considering the occurrence of crack effect seriously to the partial-interaction behavior.

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

COMPUTATION OF TURBULENT NATURAL CONVECTION IN A RECTANGULAR CAVITY WITH THE FINITE-VOLUME BASED LATTICE BOLTZMANN METHOD (유한체적법을 기초한 레티스 볼쯔만 방법을 사용하여 직사각형 공동에서의 난류 자연대류 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.39-46
    • /
    • 2011
  • A numerical study of a turbulent natural convection in an enclosure with the lattice Boltzmann method (LBM) is presented. The primary emphasis of the present study is placed on investigation of accuracy and numerical stability of the LBM for the turbulent natural convection flow. A HYBRID method in which the thermal equation is solved by the conventional Reynolds averaged Navier-Stokes equation method while the conservation of mass and momentum equations are resolved by the LBM is employed in the present study. The elliptic-relaxation model is employed for the turbulence model and the turbulent heat fluxes are treated by the algebraic flux model. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with the deferred correction way to ensure accuracy and stability of solutions. The present LBM is applied to the prediction of a turbulent natural convection in a rectangular cavity and the computed results are compared with the experimental data commonly used for the validation of turbulence models and those by the conventional finite-volume method. It is shown that the LBM with the present HYBRID thermal model predicts the mean velocity components and turbulent quantities which are as good as those by the conventional finite-volume method. It is also found that the accuracy and stability of the solution is significantly affected by the treatment of the convection term, especially near the wall.

Development of Reliability Design Technique and Life Prediction Model for Electronic Components (취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Behavioral characteristics of a chondrostean sturgeon species Acipenser baerii prelarvae in response to different environmental light intensities in a diel photoperiodic cycle

  • Kim, Eun Jeong;Park, Chulhong;Nam, Yoon Kwon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.245-257
    • /
    • 2020
  • Behavioral response to a diel photoperiodicity (500 lx for 16 h, 5 lx for 4 h and < 0.5 lx for 4 h) and phototactic characteristics in dark conditions were examined with Siberian sturgeon Acipenser baerii (Chondrostei, Actinopterygii) prelarvae. Siberian sturgeon prelarvae represented both qualitative and quantitative changes in their behavioral patterns according to different light intensities in a diel photoperiodicity. Under daylight conditions (500 lx), prelarvae displayed saltatory changes of behavioral features with ages (Day 0-Day 9) in a general order of swimming-up/drifting, swimming in the upper water column, benthic swimming with rheotaxis, schooling and post-schooling behavior. Compared to daylight conditions, prelarvae tended to show more benthic performances and quantitative reductions of schooling and post-schooling behaviors under dimlight conditions (5 lx). Under dark conditions (< 0.5 lx), prelarvae exhibited a fairly uniform behavioral pattern characterized by the benthic swimming across the bottom of the tank. From phototaxis tests under dark conditions, navigational responses of prelarvae to a spotlight illumination were quantitatively changed as their ages increased. The phototactic responses reached the peak on Day 2, continued until Day 4, and then gradually decreased until Day 8. A partial recovery of positive phototaxis was observed on Day 9. Data from this study suggest that the diel light cycle as well as the light intensity of each interval in the cycle should be considered as important components of a practical guide for evaluating fitness and developmental states of artificially propagated Siberian sturgeon prelarvae.

Development of a High Strength Al-Si-Mg Alloy for Rheo-diecasting (레오다이캐스팅을 위한 고강도 Al-Si-Mg 합금설계)

  • Park, Kyu-Sup;Jang, Young-Soo;Choi, Byoung-Hee;Kang, Byung-Kuen;Kim, Hae-Soo;Choi, Sang-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • Recently, development of Al-based alloys for high mechanical performance has been an important issue in automotive industry. The present study focused on the design of a high strength Al-based alloy for rheo-diecasting. The research was based on thermodynamic calculation and experimentals to optimize the alloy compositions. Two important considerations were carried out: i) to obtain uniform slurry with fine and globular microstructures for rheo-diecasting, ii) to be strengthend by T6 heat treatment. In order to evaluate the effect of Si content on the slurry microstructure and castability, thermodynamic calculation and fluidity test were carried out. The effects of various alloying components, such as Mg, Cu and Zn, on age hardenability were also investigated. The mechanical properties of the rheo-diecasting products using the newly developed alloy are 324MPa in tensile strength, 289MPa in yield strength, and 11.2% in elongation after T6 heat treatment.

Performance Test of Metal 3D Printed Micro Gas Turbine Engine Combustor (초소형 가스터빈 엔진용 금속 3D 프린팅 연소기 성능 시험)

  • Kim, Jaiho;Kim, Hyungmo;Park, Poomin;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.51-58
    • /
    • 2019
  • In this study, a set of performance tests on 3D-printed combustor components were carried out to investigate the performance of 3D-printed component and its feasibility for micro gas turbine engines. The test were conducted for four different equivalence ratios under two different engine operating conditions. The measurement results show that the tested combustor had a low total pressure loss coefficient and a uniform exit temperature distribution. However, the combustion efficiency values are less than 93.5% owing to the large amount of UHC and CO, which is considerably lower than a typical gas turbine engine combustor. The performance data obtained from the tests will be used for combustor performance improvements using 3D-printing technology.

A COMPREHENSIVE VIEW OF LARGE-SCALE MAGNETIC FIELDS, WITH EMPHASIS ON THE GALACTIC MAGNETIC FIELD NEAR THE SUN

  • HEILES CARL
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.151-154
    • /
    • 1996
  • We examine the observations of large-scale magnetic fields in the Universe. We begin at the largest scale with clusters of galaxies and work our way down through galaxies and finally to the Milky Way. on which we concentrate in detail. We examine the observations of the Galactic magnetic field, and their interpretation, under the philosophy that the Galactic magnetic field is like that in other spiral galaxies. We use pulsar data. diffuse Galactic synchrotron emission, and starlight polarization data to discuss the Galaxy's global magnetic configuration and the uniform ($B_u$), random ($B_r$), and total ($B_t$) components of the field strength. We find disagreement among conclusions derived from the various data sets and argue that the pulsar data are not the best indicator for large-scale Galactic field. Near the Solar circle, we find that the azimuthal average of $B_t$ is 4.2$\mu$G and we adopt $B_u\~$2.2 and $B_r\~3.6{\mu}G$. $B_t$ is higher in spiral arms, reaching $\~5.9{\mu}G$. $B_t$ is higher for smaller $R_{Gal}$, reaching $\~8.0{\mu}G$ for $R_{Gal}$ = 4.0 kpc. The pattern of field lines is not concentric circles but spirals. The inclination of the magnetic spiral may be smaller than that of the Galaxy's spiral arms if our sample, which refers primarily to the interarm region near the Sun, is representative. However, it is not inconceivable that the local field lines follow the Galaxy's spiral pattern, as is observed in external galaxies.

  • PDF

A Study on the Kasaya Remains of Great Monk Seo San and Great Monk Byeok Am, from the Middle Period of Joseon Dynasty (조선 중기 서산대사와 벽암대사의 가사 유물에 대한 연구)

  • Kang, Sun-Jung;Cho, Woo-Hyun
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.3
    • /
    • pp.122-138
    • /
    • 2011
  • The present research aims to consider the real remains of 2 suits of Kasaya owned by the Hwaeom Temple(華嚴寺) based on research results about Kasaya in the meanwhile. The present research on 2 suits of remains which are Royal gifts given to monk soldiers in case of a national crisis of the Joseon Dynasty has a big meaning in examining characteristics of Kasaya and grasping characteristics and structure of the 17th century's Kasaya of the Joseon Dynasty through dense survey and analysis according to components. If examining characteristics of Kasaya, the Kasaya of the Great Monk Seo San(西山) is composed on the basis of an initial form of Sun and Moon Light Patch's generation and the Kasaya of the Great Monk Byeok Am(碧巖) has a form that is separately attached through production of embroidery patch as a process of being settled down. If examining what surrounds gold thread in the girth and expression of Sumeru and Chaeunmun(彩雲紋), the composition of a form similar to an insignia badge, so because this is a Royal gift, this can be estimated as being analyzed in a Buddhism aspect by devising a design from the insignia badge at the time, with a meaning like an official uniform given to a monk. Although the insignia badge is a square, it seems that the Sun and Moon Light Patch is made as a rectangular form corresponding to the structure of Kasaya. In addition, it is thought that what the Samjoko(三足烏) idea which is a symbol of the Sun based on Buddhism and Taoism is used together with Yijoko(二足烏) even in expression of the Sun and Moon Light Patch in the Joseon Dynasty which was a Confucian country has a relationship with what a bird was expressed in the insignia badge of winged animals.

Experimental evaluation of machining limit in machining V-shaped microgrooves on electroless nickel plated die materials (무전해 니켈도금 소재의 초정밀 가공에서 V-형상 미세 패턴 가공한계에 대한 실험적 평가)

  • Kim, Hyun Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.263-267
    • /
    • 2013
  • The continuing demand for increasingly slimmer and brighter liquid crystal display (LCD) panels has led to an increased focus on the role of light guide panels (LGPs) or optical films that are used to obtain diffuse, uniform light from the backlight unit (BLU). The most basic process in the production of such BLU components is the micromachining of V-shaped grooves. Thus, given the current trend, micromachining of V-shaped grooves is expected to play increasingly important roles in today's manufacturing technology. LCD BLUs comprise various optical elements such as a LGP, diffuser sheet, prism sheet, and protector sheet with V-shaped grooves. High-aspect-ratio patterns are required to reduce the number of sheets and enhance light efficiency, but there is a limit to the aspect ratio achievable for a given material and cutting tool. Therefore, this study comprised a series of experimental evaluations conducted to determine the machining limit in microcutting V-shaped grooves on electroless nickel plated die materials when using single-crystal diamond tools with point angles of $20^{\circ}-80^{\circ}$. Cutting performance was evaluated at various cutting speeds and depths of cut using different machining methods and machine tools. The experimental results are that V-shaped patterns with angles of $80^{\circ}$ or up can be realized regardless of the machining conditions and equipment. Moreover, the feed rate has little effect on machinability, and it is thought that the fly-cut method is more efficient for shallow patterns.